שיחה:88-112 תשעג סמסטר א

מתוך Math-Wiki

חזרה לדף הקורס


גלול לתחתית העמוד


הוספת שאלה חדשה

הוסף שאלה חדשה (רשום כותרת לשאלה, רשום את תוכן השאלה ולחץ על שמירה למטה מימין לסיום).

-עזרה על עיצוב הטקסט וכתיב מתמטי תוכלו למצוא כאן

אם אתם רוצים לשאול שאלה עליכם ליצור חשבון משתמש באתר.

שאלות

תרגיל 1

רשום בהודעות שתרגיל 1 קוצר אך יורד לי בדיוק אותו קובץ שירד לי קודם (עם 7 שאלות)? איל דימנט 23:25, 24 באוקטובר 2012 (IST)


>זו הודעה של בדידה שהופיעה בטעות פה. תוקן. עדי

רמז לשאלה 5,תרגיל 1

[math]\displaystyle{ z^n=(rcis(\theta))^n=r^ncis(n \theta)=1 }[/math] החלק המדומה בצד ימין הוא אפס. מתי החלק המדומה בצד שמאל הוא אפס? כתוצאה מכך מהי הזוית/זויות ומיהו r? ועל כן, היכן יושבים מרוכבים אלו על המישור? עדי

סילבוס

שלום, אשמח אם תעלו סילבוס של הקורס. כרגע הסילבוס הוא של "בדידה" משום מה. תודה.

>>תוקן. עדי

תרגיל 1 שאלה 6

שלום! האם אפשר לקבל הכוונה לשאלה 6? ניסיתי להציב אבל אני לא רואה איך אפשר עוד להתקדם בפתרון.... תודה מראש!

>> השאלה מה הצבת, את [math]\displaystyle{ z }[/math] או את הצמוד שלו? רצוי להתחיל ממה שידוע, כלומר, שהצבת [math]\displaystyle{ z }[/math] היא פיתרון. אז העזר בתכונות ההצמדה שהוכחנו בכיתה כדי לעבור להופעה של [math]\displaystyle{ \bar z }[/math] במשוואה זו במקום. עדי

תרגיל בית 2 שאלה 2.3 סעיף ד

שלום! כשאומרים ש 0F=1Z3 מתכוונים לאיבר הראשון בZ3 או לאיבר 1 בZ3? תודה מראש!

>>לאיבר 1 ב[math]\displaystyle{ Z_3 }[/math]. עדי

שאלה 4ב בתרגיל 3

יש לי שאלות של אסור ומותר לגבי הוכחות, שעלו בעקבות שאלה מספר 4ב בתרגיל מספר 3. ראשית אני חושב שמותר לי להניח שהקבוצה מוכלת בתוך השדה, אחרת אין מה לדבר על תת שדה. שנית, אני רוצה להוכיח כי הקבוצה שווה לשדה הנתון. הגעתי לכך שהראיתי שאם קיים איבר בשדה שהוא לא בקבוצה, אז הסכום של 1 והאיבר "לפניו" (או קומבינציה מסויימת של אברי הקבוצה) הם בעצם אותו איבר שלא נמצא בקבוצה. לכן הקבוצה לא סגורה תחת חיבור ולכן לא יכולה להיות שדה. אני יכול לטעון זאת? מותר לי? או שבשאלה הספציפית הזאת הדרך לפתור היא רק דרך הנחה בשלילה או הוכחת הקריטריון המקוצר?

>>ראשית, ודאי ש F שדה, זה נתון. שנית, הוכח פורמלית לפי הקריטריון המקוצר. עדי

תרגיל מס' 2 שאלה לא מהחוברת

בסעיף א' איזה משוואה צריך לבנות?

>> [math]\displaystyle{ \forall (a,b),(c,d),(e,f)\in C\ \ (a,b)[(c,d)+(e,f)]=(a,b)(c,d)+(a,b)(e,f) }[/math] עם החיבור והכפל המוגדרים בשאלה. עדי

תרגול 2 שאלה לא מהחוברת...

שלום! :) לא הבנתי בדיוק את המשמעות של RxR... אשמח להסבר!

>> [math]\displaystyle{ A\times B }[/math] הוא אוסף כל הזוגות הסדורים כך שה"קואורדינטה" הראשונה מגיעה מ-A והשניה מ-B: [math]\displaystyle{ A\times B=\{(a,b):a\in A, b\in B\} }[/math]. במקרה זה [math]\displaystyle{ R\times R }[/math] הוא אוסף כל הזוגות הסדורים מעל הממשיים (כלומר המישור הממשי). היות ומספר מרוכב מוגדר ע"י זוג סדור של מספרים ממשיים (האחד מייצג את הרכיב הממשי והשני את הרכיב המדומה) ניתן להתייחס ל-[math]\displaystyle{ R\times R }[/math] כקב' שקולה ל-[math]\displaystyle{ C }[/math], ממנו מגיעות הפעוללות המוגדרות בשאלה.