משתמש:איתמר שטיין
שאלה 5
סעיף א
כמו תמיד בחישוב אינטגרל של ערך מוחלט, צריך לפצל לתחום שבו הפונקציה חיובית ותחום שבו היא שלילית.
במקרה שלנו [math]\displaystyle{ \cos(\theta) }[/math] היא חיובית כאשר [math]\displaystyle{ 0\leq\theta \leq \frac{\pi}{2} }[/math] וכאשר [math]\displaystyle{ \frac{3\pi}{2} \leq\theta \leq 2\pi }[/math] ושלילית כאשר [math]\displaystyle{ \frac{\pi}{2}\leq\theta \leq \frac{3\pi}{2} }[/math]
כלומר
[math]\displaystyle{ \int _0 ^\pi \, \int_0^\pi \, |\cos(x+y)| \mathrm{d}x\mathrm{d}y = \iint \limits_{0\leq x+y \leq \frac{\pi}{2}} \, \cos(x+y) \mathrm{d}x\mathrm{d}y -\iint \limits_{\frac{\pi}{2}\leq x+y \leq \frac{3\pi}{2}} \, \cos(x+y) \mathrm{d}x\mathrm{d}y +\iint \limits_{\frac{3\pi}{2}\leq x+y \leq 2\pi } \, \cos(x+y) \mathrm{d}x\mathrm{d}y }[/math]
האינטגרל הראשון הוא:
[math]\displaystyle{ \iint \limits_{0\leq x+y \leq \frac{\pi}{2}} \, \cos(x+y) \mathrm{d}x\mathrm{d}y = \int _0 ^\frac{\pi}{2} \, \int_0^{\frac{\pi}{2}-x} \, \cos(x+y) \mathrm{d}y \mathrm{d}x = \int _0 ^\frac{\pi}{2} \, \sin(x+y) \mid_0^{\frac{\pi}{2}-x} \mathrm{d}x }[/math]
[math]\displaystyle{ = \int _0 ^\frac{\pi}{2} \, 1 - \sin(x) \mathrm{d}x = x+\cos(x) \mid_0 ^\frac{\pi}{2} = \frac{\pi}{2} - 1 }[/math]
באופן דומה האינטגרל השלישי הוא:
[math]\displaystyle{ \iint \limits_{\frac{3\pi}{2}\leq x+y \leq 2\pi } \, \cos(x+y) \mathrm{d}x\mathrm{d}y = \int _\frac{\pi}{2} ^{\pi} \, \int_{\frac{3\pi}{2}-x}^{\pi} \, \cos(x+y) \mathrm{d}y\mathrm{d}x = \int _\frac{\pi}{2} ^{\pi} \, \sin(x+y) \mid_{\frac{3\pi}{2}-x}^{\pi} \mathrm{d}x }[/math]
[math]\displaystyle{ = }[/math]