קוד:גבול של הרכבת פונקציות (סופרפוזיציה)

מתוך Math-Wiki
גרסה מ־15:34, 26 באוגוסט 2014 מאת Ofekgillon10 (שיחה | תרומות) (יצירת דף עם התוכן "\begin{theorem} תהיינה $f:A\to B , g:B\to \mathbb{R} , A,B\subseteq \mathbb{R} $ ונניח כי 1.$\lim_{x\to p} f(x)=q $ 2.$\lim_{x\to q} g(x)=l $ 3....")
(הבדל) → הגרסה הקודמת | הגרסה האחרונה (הבדל) | הגרסה הבאה ← (הבדל)

\begin{theorem} תהיינה $f:A\to B , g:B\to \mathbb{R} , A,B\subseteq \mathbb{R} $ ונניח כי

1.$\lim_{x\to p} f(x)=q $

2.$\lim_{x\to q} g(x)=l $

3. קיימת סביבה של $p$ שבה $f(x)\neq q $

אזי אם נגדיר $h=g\circ f $ יהיה קיים הגבול $\lim_{x\to p} h(x) $ והוא יהיה שווה ל- $l$ \end{theorem}

דוגמה: למה תנאי 3 הוא הכרחי

נניח $f(x)\equiv 0 $ ו- $g(x)=\begin{cases} 0\ \text{if}\ x\neq 0 \\ 1\ \text{if}\ x=0\end{cases} $ . נראה כי $h(x)\equiv 1 $ ולכן $\lim_{x\to 0} h(x)=1 $ למרות ש- $\lim_{x\to 0} f(x) = 0 $ ו- $\lim_{x\to 0} g(x) = 0 $

\begin{proof} נשתמש בעקרון היינה: תהי $x_n\to p , x_n \neq p $ . נגדיר $y_n=f(x_n) $ ואז $y_n\to q$ ומהנתון השלישי $y_n\neq q $, מכאן ש- $h(x_n)=g(f(x_n))=g(y_n)\to l $ , כדרוש \end{proof}