קוד:למת רול
\begin{definition} $C(A)$ = כל הפונקציות שרציפות בקבוצה $A$ .
$D(A) $ = כל הפונקציות שגזירות בקבוצה $A$ \end{definition}
\begin{theorem} תהי $f\in C[a,b] \cap D(a,b) $ כך ש- $f(a)=f(b) $ אזי $\exists c\in (a,b) : f'(c)=0 $ \end{theorem}
\begin{proof} לפי משפט וויירשטראס הפונקציה מקבלת מקסימום ומינימום ב- $[a,b] $ , אם אחד מהם לא בקצוות אזי הוא ב- $(a,b) $ ומכאן שהפונקציה גזירה בו והנגזרת בו הוא $0$. אם גם המינימום וגם המקסימום בקצוות נקבל שהפונקציה קבועה ולכן היא ישר והנגזרת שלה באופן זהותי הוא $0$. \end{proof}