קוד:סדרות חסומות

מתוך Math-Wiki
גרסה מ־16:10, 11 באוגוסט 2014 מאת Ofekgillon10 (שיחה | תרומות) (יצירת דף עם התוכן "הגדרה: סדרה $ \{a_n \}_{n=1}^\infty $ נקראת חסומה אם קבוצת איברי הסדרה חסומה (ראינו את ההגדרה של קבוצ...")
(הבדל) → הגרסה הקודמת | הגרסה האחרונה (הבדל) | הגרסה הבאה ← (הבדל)

הגדרה: סדרה $ \{a_n \}_{n=1}^\infty $ נקראת חסומה אם קבוצת איברי הסדרה חסומה (ראינו את ההגדרה של קבוצה חסומה).

לדוגמה: הסדרה הזאת לא חסומה:

$ 0,1,0,2,0,3,0,4,0,5,0,6,0,7,\cdots $

משום שלא חסומה מלעיל.

\underline{משפט}: כל סדרה מתכנסת היא חסומה

\underline{הוכחה}: נניח שהסדרה מתכנסת ל- $ L $, ולכן לכל אפסילון קיים $ N $ כך שלכל $ n>N $, $ |a_n-L|<\epsilon $. בפרט, עבור $ \epsilon=1 $. נגדיר $ M=max\{|a_1|,|a_2|,\cdots,|a_N|,|L+1|\} $ ונראה ש- $\forall n : |a_n|\leq M $ משום שאם $ n\leq N $ אז האיבר $ |a_n| $ נמצא בקבוצה ש-$ M $ הוא המקסימום שלה, ואם $ n>N $ אז גם ככה $ |a_n-L|<1 $ ולכן $ |a_n|<|L|+1<M $ . משל

הערה חשובה: המשפט ההפוך לא נכון. לדוגמה אם ניקח את $ a_n=(-1)^n $ (כלומר הסדרה $ 1,-1,1,-1,\cdots $ ) חסומה מלעיל ע"י 1 ומלרע ע"י $ -1 $ אבל לא מתכנסת