אנליזה מתקדמת למורים תרגול 5
חזרה ל מערכי תרגול.
הגדרה
נאמר שפונקציה גזירה בנקד' [math]\displaystyle{ z_0 }[/math] אם לכל סדרה [math]\displaystyle{ \triangle z\to 0 }[/math] קיים הגבול [math]\displaystyle{ \underset{\lim}{\triangle z\to 0}\frac{f(\triangle z+z_0)-f(z_0)}{\triangle z} }[/math], ואז ערך הנגזרת זה הגבול הנ"ל.
פונקציה היא גזירה אם היא גזירה בכל נקודה.
דוגמאות
תרגיל
האם הפונקציה [math]\displaystyle{ f(z)=z^2 }[/math] גזירה?
פתרון
כן. לפי הגדרה, מקבלים בדיוק כמו בממשיים!
תרגיל
האם הפונקציה [math]\displaystyle{ f(a+bi)=2a-3bi }[/math] גזירה באפס?
פתרון
לא! לוקחים סדרה ממשית וסדרה מדומה טהורה.
משפטים
סכום ומכפלה של גזירות גזירה. כלל השרשת גם מתקיים!