88-132 סמסטר א' תשעא/ פתרון מועד א'

מתוך Math-Wiki
גרסה מ־19:36, 31 בינואר 2011 מאת ארז שיינר (שיחה | תרומות) (דף חדש: =המבחן של פרופ' זלצמן= ==שאלה 1== הוכח/הפרך: הסדרה a_n מתכנסת אם"ם לכל תת סדרה a_n_k יש תת סדרה מתכנסת ===הפרכה===…)
(הבדל) → הגרסה הקודמת | הגרסה האחרונה (הבדל) | הגרסה הבאה ← (הבדל)

המבחן של פרופ' זלצמן

שאלה 1

הוכח/הפרך: הסדרה a_n מתכנסת אם"ם לכל תת סדרה a_n_k יש תת סדרה מתכנסת

הפרכה

כל סדרה חסומה שאינה מתכנסת מהווה דוגמא נגדית, מכיוון שכל תת סדרה חסומה גם היא ולפי משפט בולצאנו ויירשטראס יש לה תת סדרה מתכנסת. (למשל [math]\displaystyle{ a_n=(-1)^n }[/math])