משתמש:אור שחף/133 - הרצאה/6.3.11
הגדרה: אינטגרל מסויים הוא אינטגרל עם גבולות [math]\displaystyle{ \int\limits_a^b f }[/math] שלמדנו עד עכשיו - גבול של סכומי רימן וסכומי דרבו. אם f רציפה ניתן, לפעמים, לחשב את האינטגרל לפי נוסחת ניוטון-לייבניץ. השלב העיקרי בחישוב זה הוא מציאת הפונקציה הקדומה, ולכן הגדירו אינטגרל לא מסויים - ללא גבולות - [math]\displaystyle{ \int f }[/math], שפתרונו פשוט [math]\displaystyle{ F(x)+c }[/math] עבור F פונקציה קדומה ל-f.
טבלה של אינטגרלים פשוטים:
[math]\displaystyle{ \begin{array}{l|l} f(x) & \int f(x)\mathrm dx\text{\color{gray}+constant}\\ \hline c & cx\\ x^\alpha\quad(\alpha\ne-1) & \frac{x^{\alpha+1}}{\alpha+1}\\ x^{-1} & \ln|x|\\ \sin(x) & -\cos(x)\\ \cos(x) & \sin(x)\\ \sec^2(x) & \tan(x)\\ e^x & e^x\\ a^x\quad(1\ne a\gt 0) & \frac{a^x}{\ln(a)}\\ \frac1{1+x^2} & \arctan\left(\frac xa\right)\\ \frac1\sqrt{1-x^2} & \arcsin(x)\\ \frac1\sqrt{a^2-x^2} & \arcsin\left(\frac xa\right) \end{array} }[/math]
בדיקות
- נבדוק [math]\displaystyle{ \frac\mathrm d{\mathrm dx}\ln|x|=\frac1x }[/math] (עבור [math]\displaystyle{ x\ne0 }[/math]): לפי ההגדרה [math]\displaystyle{ \ln|x|=\begin{cases}\ln(x)&x\gt 0\\\ln(-x)&x\lt 0\end{cases} }[/math]. לכן עבור [math]\displaystyle{ x\gt 0 }[/math] מתקיים [math]\displaystyle{ \frac\mathrm d{\mathrm dx}\ln|x|=\frac\mathrm d{\mathrm dx}\ln(x)=\frac1x }[/math] ועבור [math]\displaystyle{ x\lt 0 }[/math], [math]\displaystyle{ \frac\mathrm d{\mathrm dx}\ln|x|=\frac\mathrm d{\mathrm dx}\ln(-x)=-\frac1{-x}=\frac1x }[/math]. [math]\displaystyle{ \blacksquare }[/math]
- [math]\displaystyle{ \begin{align}\frac\mathrm d{\mathrm dx}\frac1a\arctan\left(\frac xa\right)=\frac1a\frac1{1+\left(\frac xa\right)^2\frac1a\end{align} }[/math]
- [math]\displaystyle{ \frac\mathrm d{\mathrm dx}\arcsin\left(\frac xa\right)=\frac1\sqrt{1-\left(\frac xa\right)^2}\frac1a=\frac1\sqrt{a^2-x^2} }[/math]
דוגמאות חישוב
- [math]\displaystyle{ \int\sqrt x\mathrm dx=\int x^\frac12\mathrm dx=\frac{x^\frac32}{3/2}+c=\frac23x^\frac32+x }[/math]
- [math]\displaystyle{ \int\frac1\sqrt{x-7}\mathrm dx=\int(x-7)^{-\frac12}\mathrm dx=2(x-7)^\frac12+c }[/math]
- [math]\displaystyle{ \int\frac{\mathrm dx}{(3x-7)^12}=\int(3x-7)^{-12}\mathrm dx=\frac{(3x-7)^{-11}}{-11\cdot3}+c }[/math] (מהפיכת כלל השרשרת)
- [math]\displaystyle{ \int e^{-5x}\mathrm dx=\int\frac{e^{-5x}}{-5}+c }[/math]
- [math]\displaystyle{ \int\sin\left(x^2\right)\mathrm dx\ne\frac{-cos(x^2)}{2}+c }[/math] (למעשה, האינטגרל לא אלמנטרי)
- [math]\displaystyle{ \int3^xe^x\mathrm dx=\int(3e)^x\mathrm dx=\frac{(3e)^x}{\ln(3e)}+c=\frac{(3e)^x}{1+\ln(3)}+c }[/math]
- [math]\displaystyle{ \int\tan(x)\mathrm dx=\int(\sec^2(x)-1)\mathrm dx=\tan(x)-x+c }[/math]
- [math]\displaystyle{ \int\frac{1+\cos(x)}{1+\cos^2(2x)}\mathrm dx=??? }[/math] (למרות שהפונקציה אלמנטרית אנו לא יודעים. המסר הוא שהאינטגרציה קשה)
- [math]\displaystyle{ \frac{\mathrm dx}{(x-3)(x-4)}=\int\frac{(x-3)-(x-4)}{(x-3)(x-4)}\mathrm dx=\int\frac1\{\mathrm dx}{x-3}+\frac{\mathrm dx}{x-4}=\ln|x-3|+\ln|x-4|+c }[/math]
כלל פשוט: האינטגרל לינארי, כלומר [math]\displaystyle{ \int(f+cg)=\int f+c\int g }[/math].
אינטגרציה בחלקים
כזכור, אם f ו-g פונקציות גזירות אז [math]\displaystyle{ \frac\mathrm d{\mathrm dx}f(x)g(x)=f(x)g'(x)+f'(x)g(x) }[/math]. אם f' ו-g' רציפות נוכל להפוך את זה לנוסחת אינטגרציה:
[math]\displaystyle{ \int f(x)g'(x)\mathrm dx=f(x)g(x)-\int f'(x)g(x)\mathrm dx }[/math].
דוגמאות חישוב
- [math]\displaystyle{ \int \underbrace{x}_{f(x)=x}\underbrace{\cos(x)}_{g'(x)=\cos(x)}\mathrm dx=x\sin(x)-\int1\sin(x)\mathrm dx=x\sin(x)+\cos(x)+c }[/math]. אם ננסה לפתור אינטגרל זה בדרך הפוכה [math]\displaystyle{ \int \underbrace{x}_{g'(x)=x}\underbrace{\cos(x)}_{f(x)=\cos(x)}\mathrm dx=\cos(x)\frac{x^2}2-\int-\sin(x)\frac{x^2}2\mathrm dx }[/math], ואינטגרל זה יותר קשה מהאינטגרל המקורי.
- [math]\displaystyle{ x^2e^{3x}\mathrm dx=\frac{x^2e^{3x}}3-\int\frac{2xe^{3x}}3\mathrm dx }[/math]. נעשה שוב אינטגרציה בחלקים: [math]\displaystyle{ \int\frac{2xe^{3x}}3\mathrm dx=\frac{xe^{3x}3-\int\frac{e^{3x}}3\mathrm dx=\frac{xe^{3x}3-\frac{e^{3x}}9+c }[/math] ובסה"כ [math]\displaystyle{ x^2e^{3x}\mathrm dx=\frac{x^2e^{3x}}3-\frac29xe^{3x}+\frac2{27}e^{3x}+c }[/math]
- [math]\displaystyle{ \int x^3\ln(x)\mathrm dx=\frac{x^4}4\ln(x)-\int\frac1x\frac{x^4}4\mathrm dx=\frac{x^4}4\ln(x)-\frac{x^4}{16}+c }[/math]
- [math]\displaystyle{ \int\ln(x)\mathrm dx=\int1\ln(x)\mathrm dx=x\ln(x)-\int\frac1xx\mathrm dx=x\ln(x)-x+c }[/math]
- [math]\displaystyle{ \int e^x\cos(x)\mathrm dx=e^x\sin(x)-\int e^x\sin(x)\mathrm dx=e^x\sin(x)+e^x\cos(x)+\int e^x (-\cos(x))\mathrm dx }[/math] ולכן [math]\displaystyle{ \int e^x\cos(x)\mathrm dx=\frac{e^x}2(\sin(x)+\cos(x))+c }[/math]
שיטת ההצבה או שינוי משתנים
נתחיל עם כלל השרשרת [math]\displaystyle{ \frac\mathrm d{\mathrm dx} f(g(x))=f'(g(x))g'(x) }[/math], לכן אם F קדומה ל-f אז [math]\displaystyle{ \frac\mathrm d{\mathrm dx} F(g(x))=F'(g(x))g'(x)=f(g(x))g'(x) }[/math] ולפיכך [math]\displaystyle{ \int f(g(x))g'(x)\mathrm dx=F(g(x))+c }[/math]
יש דרך פורמלית לפתור [math]\displaystyle{ \int f(g(x))g'(x)\mathrm dx }[/math] ע"י "הצבה" [math]\displaystyle{ y=g(x) }[/math]. אם כן [math]\displaystyle{ \frac{\mathrm dy}{\mathrm dx}=g'(x) }[/math]. נעביר אגף [math]\displaystyle{ \mathrm dy=g'(x)\mathrm dx }[/math]. נחזור לאינטגרל ונקבל [math]\displaystyle{ \int f(y)\mathrm dy=F(y)+c=F(g(x))+c }[/math]
דוגמאות חישוב
- [math]\displaystyle{ \int x^2 e^{x^3}\mathrm dx }[/math]. נציב [math]\displaystyle{ y=x^3 }[/math] ולכן [math]\displaystyle{ \mathrm dy = 3x^2\mathrm dx }[/math] ולכן האינטגרל שווה ל-[math]\displaystyle{ \int e^y\frac13\mathrm dy=\frac13e^y+c=\frac13e^{x^3}+c }[/math]
- [math]\displaystyle{ \int\frac{\ln(x)}x\mathrm dx }[/math]. נציב [math]\displaystyle{ y=\ln(x) }[/math] ואז [math]\displaystyle{ \mathrm dy=\frac1x\mathrm dx }[/math] והאינטגרל הוא [math]\displaystyle{ \int y\mathrm dy=\frac{y^2}2+c=\frac12(\ln(x))^2+c }[/math]
- [math]\displaystyle{ \int\frac x\sqrt{x^2+1}\mathrm dx }[/math]. נציב [math]\displaystyle{ y=x^2+1 }[/math] והאינטגרל שווה ל-[math]\displaystyle{ \int\frac{\tfrac12\mathrm dy}\sqrt y= frac12\int y^{-\frac12}\mathrm dy=y^{\frac12}+c=\sqrt{x^2+1}+c }[/math]
- [math]\displaystyle{ \int\tan(x)\mathrm dx=\int\frac{\sin(x)}{\cos(x)}\mathrm dx }[/math] ועבור [math]\displaystyle{ y=\cos(x) }[/math] נקבל [math]\displaystyle{ \int\frac{-\mathrm dy}y=-\ln|y|+c=-\ln|\cos(x)|+c }[/math]
- [math]\displaystyle{ \int\cot(x)\mathrm dx=\int\frac{\cos(x)}{\sin(x)}\mathrm dx=\ln|\sin(x)|+c }[/math]
- [math]\displaystyle{ \int\frac{f'(x)}{f(x)}\mathrm dx }[/math]. נציב [math]\displaystyle{ y=f(x) }[/math] ונקבל [math]\displaystyle{ \int\frac{\mathrm dy}y=\ln|y|+c=\ln|f(x)|+c }[/math]. לכן ניתן להוכיח שוב את סעיף [math]\displaystyle{ \int\tan(x)\mathrm dx=-\int\frac{\cos'(x)}{\cos(x)}\mathrm dx=-\ln|\cos(x)|+c }[/math].
- [math]\displaystyle{ \int\frac{f'(x)}{f^2(x)}\mathrm dx }[/math]. נציב [math]\displaystyle{ y=f(x) }[/math] ונקבל [math]\displaystyle{ \int\frac{\mathrm dy}{y^2}=-\frac1y+c=-\frac1{f(x)}+c }[/math]
- [math]\displaystyle{ \int\frac{x^5\mathrm dx}\sqrt{1-x^3} }[/math]. נציב [math]\displaystyle{ y=1-x^3 }[/math] ואז [math]\displaystyle{ \frac{(1-y)\mathrm dy}{-3}=x^5\mathrm dx }[/math]. האינטגרל שווה ל-[math]\displaystyle{ \int\frac{\frac{1-y}{-3}\mathrm dy}\sqrt y=\int\left(\frac13\sqrt y-\frac1{\sqrt y}\right)\mathrm dy=\frac29\left(1-x^3\right)^{3/2}-\frac23\left(1-x^3\right)^{1/2}+c }[/math]
- [math]\displaystyle{ \int\arcsin(x)\mathrm dx }[/math] נציב [math]\displaystyle{ y=\arcsin(x) }[/math] ומכאן ש-[math]\displaystyle{ \mathrm dx=\cos(y)\mathrm dy }[/math] מכאן שהאינטגרל הוא [math]\displaystyle{ \int y\cos(y)\mathrm dy=y\sin(y)-\int1\sin(y)\amthrm dy=y\sin(y)+\cos(y)=x\arcsin(x)+\cos(\arcsin(x))+c }[/math]. גרף (1). דרך אחרת: [math]\displaystyle{ \int\arcsin(x)\mathrm dx=\int1\arcsin(x)\mathrm dx=x\arcsin(x)-\int\frac x\sqrt{1-x^2}\mathrm dx }[/math]. נגדיר [math]\displaystyle{ y=1-x^2 }[/math] ונקבל [math]\displaystyle{ \int\frac x\sqrt{1-x^2}=\int\frac{1/2\mathrm dy}\sqrt y=-\sqrt y+c=x\arcsin(x)+\frac1\sqrt{1-x^2}+c }[/math]
- [math]\displaystyle{ \int e^\sqrt x\mathrm dx }[/math]. נציב [math]\displaystyle{ y=x^2 }[/math] לקבל [math]\displaystyle{ \int e^y2y\mathrm dy=2ye^t-\int2e^t\mathrm dy=2\sqrt xe^\sqrt x-2e^\sqrt x+c }[/math].
- [math]\displaystyle{ \int\sin(x)\cos(x)\mathrm dx }[/math]. נבחר [math]\displaystyle{ y=\sin(y) }[/math] לקבל [math]\displaystyle{ \int y\mathrm dy=\frac12y^2+c=\frac12\sin^2(x)+c }[/math]. שיטה אחרת: [math]\displaystyle{ y=\cos(x) }[/math] ו-[math]\displaystyle{ \iny-y\mathrm dy=-\frac12\cos^2(x)+c }[/math]. שיטה אחרונה: [math]\displaystyle{ =\int\frac12\sin(2x)\mathrm dx=-\frac14\cos(2x)+c }[/math]. קיבלנו 3 תשובות שונות באותו תרגיל, אך אין סתירה כי ההפרש בין כל שתי תשובות הוא גודל קבוע. למשל: [math]\displaystyle{ -\frac12\cos^2(x)-\frac12\sin^2(x)=-\frac12(\cos^2(x)+\sin^2(x))=-\frac12 }[/math]