מכינה למחלקת מתמטיקה/מערכי שיעור/14

מתוך Math-Wiki
הגרסה להדפסה אינה נתמכת עוד וייתכן שיש בה שגיאות תיצוג. נא לעדכן את הסימניות בדפדפן שלך ולהשתמש בפעולת ההדפסה הרגילה של הדפדפן במקום זה.

שיטות הוכחה

הוכחה בשלילה

הוכחה בשלילה מבוססת על הטאוטולוגיה [math]\displaystyle{ (\sim p \rightarrow F)\rightarrow p }[/math]. בהוכחה בשלילה אנו מניחים את השלילה של מה שצריך להוכיח ומגיעים לסתירה.

שימו לב שאנו לא שוללים את הנתון אלא את הצ"ל.


דוגמא:

תרגיל תהיינה A,B קבוצות המקיימות [math]\displaystyle{ A\backslash B=B\backslash A }[/math]. הוכח כי [math]\displaystyle{ A=B }[/math]


הוכחה בשלילה:


נתון: [math]\displaystyle{ A\backslash B=B\backslash A }[/math]


צ"ל: [math]\displaystyle{ A=B }[/math]


נניח בשלילה כי [math]\displaystyle{ A\neq B }[/math].


לכן קיים [math]\displaystyle{ a\in A }[/math] כך ש [math]\displaystyle{ a\notin B }[/math] (או ההפך)


לכן לפי ההגדרה [math]\displaystyle{ a\in A\backslash B }[/math] אבל [math]\displaystyle{ a\notin B\backslash A }[/math] (או ההפך)


לכן [math]\displaystyle{ A\backslash B\neq B\backslash A }[/math]


בסתירה.



דוגמא. תהיינה A,B קבוצות כך ש [math]\displaystyle{ (A\backslash B)\cup B = (A\cup B)\backslash B }[/math] הוכח כי [math]\displaystyle{ A\cap B = \phi }[/math]


הכלה דו כיוונית

בשיטה זו אנו מוכיחים שיוויון בין קבוצות. על מנת להוכיח כי [math]\displaystyle{ A=B }[/math] מספיק להוכיח כי [math]\displaystyle{ A\subseteq B }[/math] וגם [math]\displaystyle{ B\subseteq A }[/math]


דוגמא. תהיינה קבוצות A,B המקיימות [math]\displaystyle{ A\cup B = A \cap B }[/math]. הוכח כי [math]\displaystyle{ A=B }[/math]


הוכחה באמצעות הכלה דו כיוונית:


מהנתון ניתן להסיק כי [math]\displaystyle{ A\cup B \subseteq A \cap B }[/math]


לכן בפרט [math]\displaystyle{ A\cup B \subseteq A }[/math] וגם [math]\displaystyle{ A\cup B \subseteq B }[/math]


לכן [math]\displaystyle{ A\subseteq B }[/math] וגם [math]\displaystyle{ B\subseteq A }[/math]


וביחד לפי הכלה דו-כיוונית [math]\displaystyle{ A=B }[/math]