פולינום מינימלי
הגדרה
תהי A מטריצה ריבועית. אזי הפולינום המינימלי של A, מסומן [math]\displaystyle{ m_A(x) }[/math] הוא הפולינום המתוקן מהדרגה הנמוכה ביותר המקיים
- [math]\displaystyle{ m_A(A)=0 }[/math]
הערה: פולינום מתוקן הינו פולינום מהצורה [math]\displaystyle{ x^n+a_{n-1}x^{n-1}+...+a_1x+a_0 }[/math], כלומר המקדם של המונום בעל החזקה הגבוהה ביותר הינו אחד.
תכונות
- לכל פולינום f כך ש [math]\displaystyle{ f(A)=0 }[/math] מתקיים [math]\displaystyle{ m_A(x)|f(x) }[/math]. בפרט ממשפט קיילי-המילטון נובע כי הפולינום המינימלי מחלק את הפולינום האופייני
- לפולינום האופייני והפולינום המינימלי בדיוק אותם גורמים אי פריקים. בפרט, השורשים של הפולינום המינימלי הם הערכים העצמיים של המטריצה.