שיחת משתמש:Nimrod

מתוך Math-Wiki
גרסה מ־17:59, 27 ביולי 2010 מאת אור שחף (שיחה | תרומות) (ביטול גרסה 3896 של אור שחף (שיחה))
הגרסה להדפסה אינה נתמכת עוד וייתכן שיש בה שגיאות תיצוג. נא לעדכן את הסימניות בדפדפן שלך ולהשתמש בפעולת ההדפסה הרגילה של הדפדפן במקום זה.

תרגיל 1, 4.ג'

צ"ל [math]\displaystyle{ A\cap \bigcup_{i=1}^n B_i = \bigcup_{i=1}^n (A\cap B_i) }[/math] ואח"כ אתה משתמש בזה פעמיים (כדי להראות ש: [math]\displaystyle{ \bigcup_{i=1}^n A_i \cap \bigcup_{j=1}^m B_j' = \bigcup_{i=1}^n(A_i \cap \bigcup_{j=1}^m B_j') = \bigcup_{i=1}^n \bigcup_{j=1}^m (A_i \cap B_j') }[/math]). -אור שחף, שיחה, 19:01, 26 ביולי 2010 (IDT)

תרגיל 1, 2.8א

אתה רוצה להראות ש-[math]\displaystyle{ \frac{1}{a+b\sqrt{p}} \in \mathbb{F}[\sqrt{p}] }[/math]. מתקיים: [math]\displaystyle{ \frac{1}{a+b\sqrt{p}} = \frac{a-b\sqrt{p}}{a^2-b^2 p} }[/math]. מכיוון ש-[math]\displaystyle{ a^2-b^2 p \in \mathbb{F} }[/math] הטענה נכונה. -אור שחף, שיחה, 18:46, 27 ביולי 2010 (IDT)

[math]\displaystyle{ \left(a^2-b^2 p\right)^{-1} \in \mathbb{F} \subset \mathbb{F}[\sqrt{p}] }[/math] ולכן [math]\displaystyle{ \frac{a}{a^2-b^2 p} \in \mathbb{F} \and \frac{-b}{a^2-b^2 p} \in \mathbb{F} }[/math]. לפי הגדרת [math]\displaystyle{ \mathbb{F}[\sqrt{p}] }[/math] ולפי דיסטריביוטיביות (שאותה צ"ל, זה קל) נובע ש-[math]\displaystyle{ \frac{a-b\sqrt{p}}{a^2-b^2 p} \in \mathbb{F}[\sqrt{p}] }[/math] ואז, לפי [math]\displaystyle{ x^2-y^2=(x+y)(x-y) }[/math] (צ"ל), [math]\displaystyle{ \frac{x}{x}=1 }[/math] ואסוציאטיביות (צ"ל) מתקיים [math]\displaystyle{ \frac{a-b\sqrt{p}}{a^2-b^2 p} = \frac{1}{a+b\sqrt{p}} \in \mathbb{F}[\sqrt{p}] }[/math]. -אור שחף, שיחה, 19:44, 27 ביולי 2010 (IDT)
בזכות תומר שמתי לב ש-p לא בהכרח שייך ל-F, חכו. -אור שחף, שיחה, 20:07, 27 ביולי 2010 (IDT)
ברגע שמוכיחים סגירות נובע מכך: [math]\displaystyle{ a^2-b^2 p \in \mathbb{F}[\sqrt{p}] }[/math]. ניסיתי להוכיח סגירות: [math]\displaystyle{ (a+b\sqrt{p})(c+d\sqrt{p})=^\text{(distributivity)}ac+bdp+ad\sqrt{p}+bc\sqrt{p}=^\text{(associativity)}(ac+bdp)+(ad+bc)\sqrt{p} }[/math]. בזכות הגדרת [math]\displaystyle{ \mathbb{F}[\sqrt{p}] }[/math], נותר להוכיח ש-[math]\displaystyle{ ac+bdp \in \mathbb{F} }[/math], אבל בגלל קיום איבר נגדי, איבר הופכי וסגירות החיבור והכפל ב-F, צריך להתקיים ש-p שייך ל-F. חכו רגע, או שטעיתי או שיש פה משהו מתוחכם שלא ראיתי. נ.ב. נמרוד, למה מחקת? -אור שחף, שיחה, 20:37, 27 ביולי 2010 (IDT)