שיחת משתמש:Nimrod

מתוך Math-Wiki

תרגיל 1, 4.ג'

צ"ל [math]\displaystyle{ A\cap \bigcup_{i=1}^n B_i = \bigcup_{i=1}^n (A\cap B_i) }[/math] ואח"כ אתה משתמש בזה פעמיים (כדי להראות ש: [math]\displaystyle{ \bigcup_{i=1}^n A_i \cap \bigcup_{j=1}^m B_j' = \bigcup_{i=1}^n(A_i \cap \bigcup_{j=1}^m B_j') = \bigcup_{i=1}^n \bigcup_{j=1}^m (A_i \cap B_j') }[/math]). -אור שחף, שיחה, 19:01, 26 ביולי 2010 (IDT)

תרגיל 1, 2.8א

אתה רוצה להראות ש-[math]\displaystyle{ \frac{1}{a+b\sqrt{p}} \in \mathbb{F}[\sqrt{p}] }[/math]. מתקיים: [math]\displaystyle{ \frac{1}{a+b\sqrt{p}} = \frac{a-b\sqrt{p}}{a^2-b^2 p} }[/math]. מכיוון ש-[math]\displaystyle{ a^2-b^2 p \in \mathbb{F} }[/math] הטענה נכונה. -אור שחף, שיחה, 18:46, 27 ביולי 2010 (IDT)

[math]\displaystyle{ \left(a^2-b^2 p\right)^{-1} \in \mathbb{F} \subset \mathbb{F}[\sqrt{p}] }[/math] ולכן [math]\displaystyle{ \frac{a}{a^2-b^2 p} \in \mathbb{F} \and \frac{-b}{a^2-b^2 p} \in \mathbb{F} }[/math]. לפי הגדרת [math]\displaystyle{ \mathbb{F}[\sqrt{p}] }[/math] ולפי דיסטריביוטיביות (שאותה צ"ל, זה קל) נובע ש-[math]\displaystyle{ \frac{a-b\sqrt{p}}{a^2-b^2 p} \in \mathbb{F}[\sqrt{p}] }[/math] ואז, לפי [math]\displaystyle{ x^2-y^2=(x+y)(x-y) }[/math] (צ"ל), [math]\displaystyle{ \frac{x}{x}=1 }[/math] ואסוציאטיביות (צ"ל) מתקיים [math]\displaystyle{ \frac{a-b\sqrt{p}}{a^2-b^2 p} = \frac{1}{a+b\sqrt{p}} \in \mathbb{F}[\sqrt{p}] }[/math]. -אור שחף, שיחה, 19:44, 27 ביולי 2010 (IDT)