קוד: ערך מוחלט ואי שיוויונים
הערך המוחלט של מספר ממשי הוא המרחק שלו מ-0. לדוגמא:
$|7|=|-7|=7$
ההגדרה המדוייקת של הערך המוחלט היא:
$|x|=\begin{cases}x & x\geq 0 \\ -x & x<0\end{cases}$
\subsection{תכונות הערך המוחלט}
לכל x מתקיים $|x|\geq 0$
$|x|=0$ אם ורק אם $x=0$
$|x\cdot y| = |x|\cdot |y|$
$x\leq |x|$
אי שיוויון המשולש: $|x+y|\leq |x|+|y|$
$||x|-|y||\leq |x-y|$
$|x-y|$ הוא המרחק בין x לבין y
נניח $L\geq 0$ אזי $|x|\leq L$ אם ורק אם $-L\leq x\leq L$ $|x|\geq L$ אם ורק אם $x\geq L$ או $x\leq -L$
\subsection{תכונות של אי שיוויונים}
$x\leq y$ אם ורק אם $-x\geq -y$
נניח $0\leq x,y$ אזי $x\leq y$ אם ורק אם $x^2\leq y^2$
נניח $0< x,y$ אזי $x\leq y$ אם ורק אם $\frac{1}{x} \geq \frac{1}{y}$