משתמש:אור שחף/133 - הרצאה/15.5.11

מתוך Math-Wiki
< משתמש:אור שחף‏ | 133 - הרצאה
גרסה מ־14:14, 15 במאי 2011 מאת אור שחף (שיחה | תרומות) (יצירת דף עם התוכן "==תרגיל ברוח מבחן== נניח ש-<math>f_n\to f</math> במ"ש על I וש-<math>f_n</math> חסומה ב-I לכל n. הוכיחו כי גם f חסומ...")
(הבדל) → הגרסה הקודמת | הגרסה האחרונה (הבדל) | הגרסה הבאה ← (הבדל)

תרגיל ברוח מבחן

נניח ש-[math]\displaystyle{ f_n\to f }[/math] במ"ש על I וש-[math]\displaystyle{ f_n }[/math] חסומה ב-I לכל n. הוכיחו כי גם f חסומה ב-I והראו ע"י דוגמה שהתוצאה אינה נכונה אם [math]\displaystyle{ f_n\to f }[/math] נקודתית ב-I.

פתרון

אם [math]\displaystyle{ f_n\to f }[/math] במ"ש ב-I אז נוכל לקחת [math]\displaystyle{ \varepsilon=1 }[/math] ולמצוא n מסויים כך שלכל [math]\displaystyle{ x\in I }[/math] מתקיים [math]\displaystyle{ |f(x)-f_n(x)|\lt 1 }[/math] ונובע מאי-שיוויון המשולש כי לכל [math]\displaystyle{ x\in I }[/math] מתקיים [math]\displaystyle{ |f(x)|-|f_n(x)|\lt 1 }[/math]. לכן [math]\displaystyle{ |f(x)|\lt |f_n(x)|+1 }[/math]. נתון ש-[math]\displaystyle{ f_n }[/math] חסומה, נניח [math]\displaystyle{ |f_n(x)|\le M }[/math] אזי [math]\displaystyle{ \forall x\in I:\ |f(x)|\lt M+1 }[/math]. [math]\displaystyle{ \blacksquare }[/math]

לגבי הדוגמה הנגדית, נגדיר [math]\displaystyle{ f_n(x)=\begin{cases}n&x\le\frac1n\\1/x&\text{else}\end{cases} }[/math] ב-[math]\displaystyle{ (0,1) }[/math]. אזי [math]\displaystyle{ f_n\to f }[/math] נקודתית וכל [math]\displaystyle{ f_n }[/math] חסומה ע"י n, אלא ש-[math]\displaystyle{ f(x)=\frac1x }[/math], שבוודאי לא חסומה. [math]\displaystyle{ \blacksquare }[/math]




הגדרה: נתונה סדרת פונקציות [math]\displaystyle{ \{f_n\} }[/math] בקטע I. נאמר שהסדרה מקיימת את תנאי קושי במ"ש ב-I אם לכל [math]\displaystyle{ \varepsilon\gt 0 }[/math] קיים [math]\displaystyle{ n_0\in\mathbb N }[/math] כך שאם [math]\displaystyle{ n\gt m\gt n_0 }[/math] אז [math]\displaystyle{ |f_n(x)-f_m(x)|\lt \varepsilon }[/math] ב-I.


משפט 5

סדרת פונקציות [math]\displaystyle{ \{f_n\} }[/math] בקטע I מתכנסת במ"ש ב-I אם"ם היא מקיימת תנאי קושי במידה שווה.

הוכחה

תחילה נניח שקיים [math]\displaystyle{ f(x)=\lim_{n\to\infty}f_n(x) }[/math] במ"ש ונראה שתנאי קושי מתקיים. לצורך זה יהי [math]\displaystyle{ \varepsilon\gt 0 }[/math] נתון. לפי הנתון ש-[math]\displaystyle{ f_n\to f }[/math] במ"ש ב-I, קיים [math]\displaystyle{ n_0\in\mathbb N }[/math] כך שאם [math]\displaystyle{ n\gt n_0 }[/math] אז [math]\displaystyle{ |f(x)-f_n(x)|\lt \frac\varepsilon2 }[/math] לכל [math]\displaystyle{ x\in I }[/math].

כעת אם [math]\displaystyle{ n\gt m\gt n_0 }[/math] אז לכל [math]\displaystyle{ x\in I }[/math] מתקיים [math]\displaystyle{ |f_n(x)-f_m(x)|\le|f_n(x)-f(x)|+|f(x)-f_m(x)|\lt \frac\varepsilon2+\frac\varepsilon2=\varepsilon }[/math].


לצד השני, נניח ש-[math]\displaystyle{ \{f_n\} }[/math] מקיימת תנאי קושי במ"ש ב-I. ניקח [math]\displaystyle{ x_0\in I }[/math] כלשהו ונעיר שסדרת המספרים [math]\displaystyle{ \{f_n(x_0)\} }[/math] היא סדרת קושי (כי עפ"י הנתון לכל [math]\displaystyle{ \varepsilon\gt 0 }[/math] קיים [math]\displaystyle{ n_0\in\mathbb N }[/math] כך שאם [math]\displaystyle{ n\gt m\gt n_0 }[/math] אז [math]\displaystyle{ |f_n(x_0)-f_m(x_0)|\lt \varepsilon }[/math] לפי משפט קושי מאינפי 1 קיים גבול [math]\displaystyle{ \lim_{n\to\infty} f_n(x_0) }[/math]. הדבר נכון לכל [math]\displaystyle{ x_0\in I }[/math] וכך נוצרת פונקציה גבולית [math]\displaystyle{ f(x)=\lim_{n\to\infty}f_n(x) }[/math]. נותר להוכיח שההתכנסות במ"ש. יהי [math]\displaystyle{ \varepsilon\gt 0 }[/math] נתון. עפ"י תנאי קושי יש [math]\displaystyle{ n_0\in\mathbb N }[/math] כך שלכל [math]\displaystyle{ m\gt n\gt n_0 }[/math] מתקיים [math]\displaystyle{ |f_n(x)-f_m(x)|\lt \frac\varepsilon2 }[/math] לכל [math]\displaystyle{ x\in I }[/math]. כעת נבחר [math]\displaystyle{ n\gt n_0 }[/math] מסויים ועבור [math]\displaystyle{ x\in I }[/math] כלשהו נשאיף [math]\displaystyle{ m\to\infty }[/math] כלומר [math]\displaystyle{ |f_n(x)-f_m(x)|\lim_{m\to\infty}|f_n(x)-f_m(x)|\le\frac\varepsilon2\lt \varepsilon }[/math] הדבר נכון לכל [math]\displaystyle{ n\gt n_0 }[/math] ולכל [math]\displaystyle{ x\in I }[/math]. לכן הוכחנו ש-[math]\displaystyle{ f_n\to f }[/math] במ"ש ב-I. [math]\displaystyle{ \blacksquare }[/math]

טורי פונקציות

נאמר שהטור [math]\displaystyle{ \sum_{n=1}^\infty f_n(x) }[/math] מתכנס ל-[math]\displaystyle{ S(x) }[/math] במ"ש על I אם [math]\displaystyle{ S(x)=\lim_{N\to\infty}\sum_{n=1}^Nf_n(x) }[/math] במ"ש על I.

הגדרה: הטור [math]\displaystyle{ \sum_{n=1}^\infty f_n(x) }[/math] מקיים תנאי קושי במ"ש ב-I אם לכל [math]\displaystyle{ \varepsilon\gt 0 }[/math] קיים [math]\displaystyle{ n_0\in\mathbb N }[/math] כך שאם [math]\displaystyle{ n\gt m\gt n_0 }[/math] אז [math]\displaystyle{ \left|\sum_{k=m}^n f_k(x)\right|\lt \varepsilon }[/math] לכל [math]\displaystyle{ x\in I }[/math].

משפט 6

הטור [math]\displaystyle{ \sum_{n=1}^\infty f_n(x) }[/math] מתכנס במ"ש לכל I אם"ם הוא מקיים את תנאי קושי במ"ש ב-I.

הוכחה

לפי הגדרה [math]\displaystyle{ \sum_{n=1}^\infty f_n }[/math] מתכנס במ"ש על I אם"ם סדרת הסכומים החלקיים [math]\displaystyle{ \{S_N(x)\} }[/math] מתכנס במ"ש על I. לפי משפט 5 זה קורה אם"ם [math]\displaystyle{ \{S_N(x)\} }[/math] קושי במ"ש על I, כלומר אם"ם לכל [math]\displaystyle{ \varepsilon\gt 0 }[/math] קיים [math]\displaystyle{ n_0\in\mathbb N }[/math] כך שאם [math]\displaystyle{ n\gt m\gt n_0 }[/math] אזי [math]\displaystyle{ |S_n(x)-S_m(x)|\lt \varepsilon }[/math] לכל [math]\displaystyle{ x\in I }[/math], שמתקיים אם"ם [math]\displaystyle{ \forall\varepsilon\gt 0:\ \exists n_0\in\mathbb N:\ \forall n\gt m\gt n_0:\ \left|\sum_{k=m+1}^n f_k(x)\right|\lt \varepsilon }[/math] לכל [math]\displaystyle{ x\in I }[/math] וזה שקול לתנאי קושי להתכנסות הטור במ"ש על I. [math]\displaystyle{ \blacksquare }[/math]

משפט 7 (מבחן ה-M של וירשטס, The Weierstrass M test)

נניח שלכל n הפונקציה [math]\displaystyle{ f_n(x) }[/math] מוגדרת ב-I וחסומה שם: [math]\displaystyle{ |f_n(x)|\le M_n }[/math] לכל [math]\displaystyle{ x\in I }[/math]. עוד נניח שהסכום [math]\displaystyle{ \sum_{n=1}^\infty M_n }[/math] מתכנס ממש. אזי [math]\displaystyle{ \sum_{n=1}^\infty f_n(x) }[/math] מתכנס במ"ש על I.

הוכחה

נסתמך על משפט 6 לומר שמספיק לומר שמספיק להוכיח שהטור [math]\displaystyle{ \sum_{n=1}^\infty f_n(x) }[/math] קושי במ"ש ב-I. לצורך זה יהי [math]\displaystyle{ \varepsilon\gt 0 }[/math] נתון. כיוון ש-[math]\displaystyle{ \sum_{n=1}^\infty M_n }[/math] מתכנס הוא טור קושי של מספרים. לכן קיים [math]\displaystyle{ n_0\in\mathbb N }[/math] כך שאם [math]\displaystyle{ n\gt m\gt n_0 }[/math] אזי [math]\displaystyle{ \left|\sum_{k=m}^n M_k\right|\lt \varepsilon }[/math] או [math]\displaystyle{ \sum_{k=m}^n M_k\lt \varepsilon }[/math] (כי [math]\displaystyle{ M_k\ge0 }[/math]). כעת אם [math]\displaystyle{ n\gt m\gt n_0 }[/math] אז לכל [math]\displaystyle{ x\in I }[/math] מתקיים [math]\displaystyle{ \left|\sum_{k=m}^n f_n\right|\le\left|\sum_{k=m}^n|M_k|\le\sum_{k=m}^n M_k\lt \varepsilon }[/math] ובזה קיימנו את תנאי קושי להתכנסות הטור [math]\displaystyle{ \sum f_n }[/math] במ"ש על I. [math]\displaystyle{ \blacksquare }[/math]


מסקנה

בתנאים של מבחן וירשטרס לכל [math]\displaystyle{ x\in I }[/math] [math]\displaystyle{ \sum f_n }[/math] מתכנס בהחלט.

הוכחה

נקח [math]\displaystyle{ x\in I }[/math] כלשהו. לפי נתון לכל k [math]\displaystyle{ |f_n(x)|\le M_k }[/math] נתון ש- [math]\displaystyle{ \sum M_n }[/math] מתכנס בהחלט. ע"פ מבחן ההשוואה [math]\displaystyle{ \sum |f_n| }[/math] מתכנס. [math]\displaystyle{ \blacksquare }[/math]

דוגמה

נוכיח שהטור ההנדסי [math]\displaystyle{ \sum_{n=0}^\infyt x^n }[/math] מתכנס נקודתית בקטע [math]\displaystyle{ (-1,1) }[/math] אבל לא במ"ש ונוכיח שאם [math]\displaystyle{ 0\lt r\lt 1 }[/math] הטור מתכנס ב-[math]\displaystyle{ [-r,r] }[/math]. תשובה: כבר הוכחנו שאם [math]\displaystyle{ -1\lt x\lt 1 }[/math] אז [math]\displaystyle{ \sum_{n=0}^\infty x^n }[/math] מתכנס ל-[math]\displaystyle{ \frac1{1-x} }[/math]. ההתכנסות אינה במ"ש כי לכל סכום חלקי [math]\displaystyle{ S_N }[/math] חסומה בקטע [math]\displaystyle{ (-1,1) }[/math]. [math]\displaystyle{ |S_N(x)|\le\sum_{n=0}^\infty |x^n|\le\sum_{n=0}^\infty 1=\infty }[/math]. אם היה נכון ש-[math]\displaystyle{ S_N(x)\to\frac1{1-x} }[/math] במ"ש ב-[math]\displaystyle{ (-1,1) }[/math]. היינו מסיקים שהפונקציה [math]\displaystyle{ \frac1{1-x} }[/math] חסומה וזה אינו נכון. לכן ההתכנסות לא במ"ש. נותר להוכיח שאם [math]\displaystyle{ r\in(0,1) }[/math] אז [math]\displaystyle{ \sum_{n=0}^\infty x^n=\frac1{1-x} }[/math] במ"ש על [math]\displaystyle{ [-r,r] }[/math]. ובכן בקטע [math]\displaystyle{ [-r,r] }[/math] מתקייים [math]\displaystyle{ |x^n|\le r^n=M_n }[/math] כאן [math]\displaystyle{ \sum_{n=0}^\infty M_n=\sum_{n=0}^\infty r^n=\frac1{1-r} }[/math]. כיוון שסכום החסמים מתכנס מבחן וירשטרס אומר ש-[math]\displaystyle{ \sum_{n=0}^\infty x^n }[/math] מתכנס במ"ש ב-[math]\displaystyle{ [-r,r] }[/math].

משפט 8

נניח ש-[math]\displaystyle{ S(x)=\sum_{n=0}^\infty f_n(x) }[/math] עם התכנסות במ"ש על I. אם עבור איזה [math]\displaystyle{ x_0\in I }[/math] כל [math]\displaystyle{ f_n }[/math] רציפה ב-[math]\displaystyle{ x_0 }[/math] אז גם S רציפה ב-[math]\displaystyle{ \lt math\gt formula }[/math]x_0</math>.

הוכחה

לכל N הסכום החלקי [math]\displaystyle{ S_N(x)=\sum_{n=1}^N f_n(x) }[/math] סכום סופי של פונקציות רציפות ב-[math]\displaystyle{ x_0 }[/math].

מאינפי 1 ידוע ש-[math]\displaystyle{ S_N(x) }[/math] רציפה ב-[math]\displaystyle{ x_0 }[/math] עבור כל N. נתון [math]\displaystyle{ S_N\to S }[/math] במ"ש על I.

לכן נובע ממשפט 2 ש-f רציפה ב-[math]\displaystyle{ x_0 }[/math]. [math]\displaystyle{ \blacksquare }[/math]

מסקנה

בתנאים של משפט 8, אם כל [math]\displaystyle{ f_n }[/math] רציפה ב-I כולו אז גם f רציפה ב-I כולו.

משפט 9

נניח [math]\displaystyle{ S(x)=\sum_{n=1}^\infty f_n(x) }[/math] במ"ש על [math]\displaystyle{ [a,b] }[/math]. עוד נניח שכל [math]\displaystyle{ f_n }[/math] אינטגרבילית ב-[math]\displaystyle{ [a,b] }[/math]. אזי S אינטגרבילית ב-[math]\displaystyle{ [a,b] }[/math] ו-[math]\displaystyle{ \int\limits_a^b S=\sum_{n=1}^\infty \int\limits_a^b f=\int\limits_a^b\lt /math\sum_{n=1}^\infty f\gt בתנאי שהטור מתכנס במ"ש ב-\lt math\gt [a,b] }[/math].

הוכחה

כרגיל נגדיר סכומים חלקיים [math]\displaystyle{ S_N }[/math] ונתון [math]\displaystyle{ S_n\to S }[/math] במ"ש על [math]\displaystyle{ [a,b] }[/math]. לפי משפט 3 [math]\displaystyle{ \int\limits_a^b S=\lim_{N\to\infty}\int\limits_a^b S_N=\lim_{N\to\infty}\int\limits_a^b\sum_{n=1}^N f_n=\lim_{N\to\infty}\sum_{n=1}^N\int\limits_a^b f_n }[/math] כי לסכום סופי ידוע שהאינטגרל של הסכום הוא סכום האינטגרלים. מתאנו שקיים גבול [math]\displaystyle{ \lim_{N\to\infty}\sum_{n=1}^N\int\limits_a^b f_n }[/math] לפי הגדרת סכום אינסופי הגבול הוא [math]\displaystyle{ \sum_{n=1}^\infty\int\limits_a^b f_n }[/math] והוכחנו שהוא שווה [math]\displaystyle{ \int\limits_a^b S }[/math]. [math]\displaystyle{ \blacksquare }[/math]

משפט 10

יהי [math]\displaystyle{ \sum_{n=1}^\infty f_n }[/math] טור של פונקציות רציפות ב-I. נניח:

  • עבור [math]\displaystyle{ x_0\in I }[/math] אחד לפחות הטור [math]\displaystyle{ \sum_{n=1}^\infty f_n(x) }[/math] מתכנס.
  • [math]\displaystyle{ \sum_{n=1}^\infty f_n' }[/math] סכום של פונקציות רציפות שמתכנס במ"ש לפונקציה g על I.

אזי [math]\displaystyle{ \sum_{n=1}^\infty f_n }[/math] מתכנס במ"ש על I לפונקציה גזירה S ומתקיים [math]\displaystyle{ S'=g }[/math]. בפרט, בתנאים אלה [math]\displaystyle{ \frac{\mathrm d}{\mathrm dx}\sum_{n=1}^\infty f_n(x)=\sum_{n=1}^\infty f_n'(x) }[/math].

הוכחה

בהרצאה הבאה

דוגמה ממבחן

לכל [math]\displaystyle{ x\in\mathbb R }[/math] נגדיר [math]\displaystyle{ S(x)=\sum_{n=1}^\infty\frac{\sin(nx)}{n^3} }[/math]. הוכיחו ש-f מוגדרת היטב (ז"א הטור מתכנס לכל [math]\displaystyle{ x\in\mathbb R }[/math]) ו-S בכלת נגזרת רציפה לכל [math]\displaystyle{ x\in\mathbb R }[/math].

פתרון

בהרצאה הבאה