משתמש:אור שחף/133 - הרצאה/29.5.11

מתוך Math-Wiki
< משתמש:אור שחף‏ | 133 - הרצאה
גרסה מ־18:08, 25 ביוני 2011 מאת אור שחף (שיחה | תרומות) (המשך יבוא)
(הבדל) → הגרסה הקודמת | הגרסה האחרונה (הבדל) | הגרסה הבאה ← (הבדל)

את משפט 3 לא סיימנו בהרצאה הקודמת ולכן השלמנו אותו ב-24.5.11. חלק זה מופיע בסיכום ההרצאה הקודמת ולא בדף הנוכחי.

טורי חזקות (המשך)

משפט 4

נניח שלטור [math]\displaystyle{ f(x)=\sum_{n=0}^\infty a_n(x-x_0)^n }[/math] יש רדיוס התכנסות [math]\displaystyle{ R\gt 0 }[/math], אזי:

  1. f גזירה אינסוף פעמים בקטע [math]\displaystyle{ (x_0-R,x_0+R) }[/math] ולכל [math]\displaystyle{ k\in\mathbb N\cup\{0\} }[/math] מתקיים [math]\displaystyle{ f^{(k)}(x)=\sum_{n=k}^\infty \frac{n!}{(n-k)!}a_n(x-x_0)^{n-k} }[/math]. רדיוס ההתכנסות של הטורים הגזור הוא R.
  2. לכל [math]\displaystyle{ k\in\mathbb N\cup\{0\} }[/math], [math]\displaystyle{ a_k=\frac{f^{(k)}(x_0)}{k!} }[/math], ז"א הטור הוא טור טיילור של f סביב [math]\displaystyle{ x_0 }[/math].

הוכחה

  1. באינדוקציה, בעזרת משפט 3.
  2. הוכחנו בסעיף 1 ש-[math]\displaystyle{ f^{(k)}(x)=\sum_{n=k}^\infty \frac{n!}{(n-k)!}a_n(x-x_0)^{n-k} }[/math]. נציב [math]\displaystyle{ x=x_0 }[/math] ונקבל [math]\displaystyle{ f^{(k)}(x_0)=\frac{k!}{(k-k)!}a_k+\underbrace{\frac{(k+1)!}{(k+1-k)!}a_{k+1}(x_0-x_0)}_{=0}+\dots=k!a_k }[/math], כלומר [math]\displaystyle{ a_k=\frac{f^{(k)}(x_0)}{k!} }[/math]. [math]\displaystyle{ \blacksquare }[/math]

מסקנה (משפט היחידות לטורי חזקות)

נניח ששני טורי חזקות בקטע שלם, כלומר [math]\displaystyle{ \sum_{n=0}^\infty a_n(x-x_0)^n=\sum_{n=0}^\infty b_n(x-x_0)^n }[/math] לכל [math]\displaystyle{ x\in(a,b)\ne\varnothing }[/math], אזי [math]\displaystyle{ \forall n:\ a_n=b_n }[/math].

הוכחה

נגדיר פונקציה גבולית [math]\displaystyle{ f(x)=\sum_{n=0}^\infty a_n(x-x_0)^n=\sum_{n=0}^\infty b_n(x-x_0)^n }[/math]. עפ"י סעיף 2 של משפט 4 מתקיים [math]\displaystyle{ a_n=\frac{f^{(n)}(x_0)}{n!}=b_n }[/math]. [math]\displaystyle{ \blacksquare }[/math]

הערה

חשוב לא להתבלבל: יתכן בהחלט מצב בו [math]\displaystyle{ \sum_{n=0}^\infty a_n(x-x_0)^n=\sum_{n=0}^\infty b_n(x-x_1)^n }[/math] אבל [math]\displaystyle{ a_n\ne b_n }[/math] עבור n כלשהו.

דוגמאות

  1. נמצא טור מקלורין של [math]\displaystyle{ \sum_{n=0}^\infty\frac{f^{(n)}(0)}{n!}x^n }[/math] עבור הפונקציה [math]\displaystyle{ f(x)=\frac1{1-x} }[/math]: ידוע לנו ש-[math]\displaystyle{ \frac1{1-x}=\sum_{n=0}^\infty x^n }[/math] עבור [math]\displaystyle{ |x|\lt 1 }[/math]. לפי משפט 4 טור זה הוא בהכרח טור טיילור של f סביב 0, כלומר זה טור מקלורן של f. [math]\displaystyle{ \blacksquare }[/math]
  2. נמצא טור טיילור של [math]\displaystyle{ f(x)=\frac1{1-x} }[/math] סביב [math]\displaystyle{ x_0=\frac12 }[/math], ז"א [math]\displaystyle{ \sum_{n=0}^\infty\frac{f^{(n)}\left(\frac12\right)}{n!}\left(x-\frac12\right)^n }[/math].
    דרך 1:
    [math]\displaystyle{ \begin{align}f(x)&=(1-x)^{-1}\\f'(x)&=(1-x)^{-2}\\f''(x)&=2(1-x)^{-3}\\f^{(3)}(x)&=6(1-x)^{-4}\\f^{(n)}(x)&=n!(1-x)^{-n-1}\end{align} }[/math]
    נציב [math]\displaystyle{ x=\frac12 }[/math] לקבל [math]\displaystyle{ f\left(\frac12\right)=2,\ \dots,\ f^{(n)}\left(\frac12\right)=n!2^{n+1} }[/math] ולכן הטור הוא [math]\displaystyle{ \sum_{n=0}^\infty\frac{f^{(n)}\left(\frac12\right)}{n!}\left(x-\frac12\right)^n=\sum_{n=0}^\infty2^{n+1}\left(x-\frac12\right)^n }[/math]. לצערנו עדיין לא ניתן לדעת בוודאות שהטור אכן מתכנס ל-f כי לא וידאנו שהשארית שואפת ל-0.
    דרך 2: [math]\displaystyle{ \frac1{1-x}=\frac1{\frac12-\left(x-\frac12\right)}=2\frac1{1-2\left(x-\frac12\right)}=2\sum_{n=0}^\infty\left(2\left(x-\frac12\right)\right)^n }[/math]. בניסיון השני קיבלנו את אותה התוצאה מהר יותר, והפעם אנו גם יודעים שהטור מתכנס ל-f כאשר [math]\displaystyle{ \left|2\left(x-\frac12\right)\right|\lt 1 }[/math], כלומר כש-[math]\displaystyle{ \left|x-\frac12\right|\lt \frac12 }[/math]. [math]\displaystyle{ \blacksquare }[/math]
    נסכם: [math]\displaystyle{ \sum_{n=0}^\infty x^n=\frac1{1-x}=\sum_{n=0}^\infty 2^{n+1}\left(x-\frac12\right)^n }[/math] בקטע [math]\displaystyle{ (0,1) }[/math] ויש כאן שני טורי חזקות שונים לגמרי שמתכנסים לאותה פונקציה. זה לא סותר את משפט היחידות כי לטורים אלה יש מרכז שונה.
  3. נמצא את טור מקלורין של [math]\displaystyle{ f(x)=\arctan(x) }[/math], ונקבע את תחום ההתכנסות של הטור ל-f.
    דרך 1: טור מקלורין הוא [math]\displaystyle{ \sum_{n=0}^\infty\frac{f^{(n)}(0)}{n!}x^n }[/math], כאשר
    [math]\displaystyle{ \begin{align}f(x)&=\arctan(x)\\f'(x)&=\frac1{1+x^2}\\f''(x)&=\frac{-2x}{\left(1+x^2\right)^2}\end{align} }[/math]
    מכאן ואילך לא נעים לגזור, ולכן נוותר על הדרך הזו.
    דרך 2: תחילה נחשב טור מקלורין לפונקציה [math]\displaystyle{ g(x)=\frac1{1+x^2} }[/math] ואז נוכל לקבל את הטור עבור [math]\displaystyle{ \arctan(x) }[/math] ע"י אינגרציה איבר-איבר. כעת: [math]\displaystyle{ \frac1{1+x^2}=\frac1{1-\left(-x^2\right)}=\sum_{n=0}^\infty \left(-x^2\right)^n=\sum_{n=0}^\infty (-1)^nx^{2n} }[/math] עבור [math]\displaystyle{ \left|-x^2\right|\lt 1 }[/math], ז"א [math]\displaystyle{ |x|\lt 1 }[/math]. עתה נעשה אינטגרציה: [math]\displaystyle{ \int\limits_0^x\frac{\mathrm dt}{1+t^2}=\sum_{n=0}^\infty\int\limits_0^x(-1)^nt^{2n}\mathrm dt }[/math] לכל [math]\displaystyle{ |x|\lt 1 }[/math], ולכן [math]\displaystyle{ \arctan(x)=\sum_{n=0}^\infty(-1)^n\frac{x^{2n+1}}{2n+1} }[/math]. עפ"י משפט היחידות לטורי חזקות נסיק שזה טור מקלורין של [math]\displaystyle{ \arctan }[/math] בתחום [math]\displaystyle{ (-1,1) }[/math]. [math]\displaystyle{ \blacksquare }[/math] אם מותר להציב [math]\displaystyle{ x=1 }[/math] אז נקבל את המשוואה היפה [math]\displaystyle{ \frac\pi4=1-\frac13+\frac15-\frac17+\dots }[/math], אבל מכיוון שלא מתקיים [math]\displaystyle{ |1|\lt 1 }[/math] צריך להוכיח זאת (אך נעיר שלפי הוכחות שלא נפרט הטענה נכונה). עם זאת, ניתן כבר עכשיו לדעת בוודאות ש-[math]\displaystyle{ \frac\pi6=\frac{\frac1\sqrt3}1-\frac{\left(\frac1\sqrt3\right)^3}3+\frac{\left(\frac1\sqrt3\right)^5}5-\frac{\left(\frac1\sqrt3\right)^7}7+\dots=\frac1\sqrt3\left(1-\frac1{3\cdot3}+\frac1{3^2\cdot5}-\frac1{3^3\cdot7}+\dots\right) }[/math].
  4. מצאו את טור טיילור ל-[math]\displaystyle{ \ln(x) }[/math] סביב [math]\displaystyle{ x_0=1 }[/math] וקבעו באיזה תחום הטור מתכנס ל-[math]\displaystyle{ \ln(x) }[/math].
    דרך 1: לפי הנוסחה לטור טיילור נקבל [math]\displaystyle{ \sum_{n=0}^\infty\frac{\ln^{(n)}(1)}(x-1)^n }[/math] ואז נבדוק מתי השארית [math]\displaystyle{ R_N(x) }[/math] שואפת ל-0.
    דרך 2: [math]\displaystyle{ \ln(x)=\int\limits_1^x\frac{\mathrm dt}t }[/math] ולכן תחילה נפתח [math]\displaystyle{ \frac1x }[/math]: [math]\displaystyle{ \frac1x=\frac1{1-(-x+1)}=\sum_{n=0}^\infty(-1)^n(x-1)^n }[/math] כאשר [math]\displaystyle{ |x-1|\lt 1 }[/math]. כעת [math]\displaystyle{ \ln(x)=\sum_{n=0}^\infty\int\limits_1^x(-1)^n(x-1)^n\mathrm dx=\sum_{n=1}^\infty }[/math] בתחום [math]\displaystyle{ |x-1|\lt 1 }[/math]. [math]\displaystyle{ \blacksquare }[/math] עבור [math]\displaystyle{ x=2 }[/math] לא מתקיים [math]\displaystyle{ |x-1|\lt 1 }[/math], אבל אם בכל זאת ההצבה הזו נכונה אז נקבל [math]\displaystyle{ \ln(2)=1-\frac12+\frac13-\frac14+\dots }[/math] (נעיר שזה נכון).
  5. (תרגיל ממבחן) נגדיר [math]\displaystyle{ f(x)=x^7e^{-x^2} }[/math]. מצאו [math]\displaystyle{ f^{(19)}(0) }[/math]: לכל [math]\displaystyle{ t\in\mathbb R }[/math] מתקיים [math]\displaystyle{ e^t=\sum_{n=0}^\infty \frac{t^n}{n!} }[/math] ונציב [math]\displaystyle{ t=-x^2 }[/math] לקבל [math]\displaystyle{ f(x)=x^7e^{-x^2}=x^7\sum_{n=0}^\infty{\left(-x^2\right)^n}{n!}=\sum_{n=0}^\infty\frac{(-1)^n}{n!}x^{2n+7} }[/math]. לפי משפט 4 מתקיים המקדם [math]\displaystyle{ a_{19} }[/math] של [math]\displaystyle{ x^{19} }[/math] מקיים [math]\displaystyle{ a_{19}=\frac{(-1)^6}{6!}=\frac{f^{(19)}(0)}{19!} }[/math] ולכן [math]\displaystyle{ f^{(19)}(0)=\frac{19!}{6!} }[/math]. [math]\displaystyle{ \blacksquare }[/math]