שיחה:88-211 אלגברה מופשטת קיץ תשעא
הוספת שאלה חדשה
הוסף שאלה חדשה (רשום כותרת לשאלה, רשום את תוכן השאלה ולחץ על שמירה למטה מימין לסיום).
-עזרה על עיצוב הטקסט וכתיב מתמטי תוכלו למצוא כאן
אם אתם רוצים לשאול שאלה עליכם ליצור חשבון משתמש באתר.
ארכיון
שאלות
תרגיל 4 שאלה 3
1) הכוונה היא בנקודת שבת "של g" [math]\displaystyle{ x| g*x=x }[/math] או בנקודת שבת "של G" (איקסים כך שלכל g בG מתקיים g*x=x)?
2)סימטריות של הריבוע = סיבובים? תודה
- 1) לא נתונה g ספציפית, לכן הכוונה לנקודת שבת "של החבורה" (ליתר דיוק, של הפעולה), כלומר איבר x ב-X שנשאר במקום ע"י כל איברי g ב-G.
- 2) סיבובים ושיקופים. דורון פרלמן 08:16, 30 באוגוסט 2011 (IDT)
- תודה
שאלה
ב Sn, טיפוסי המחזורים הבאים: (--)(---) ו- (---)(--) נחשבים טיפוסים שונים, או זהים? תודה!
- זהים: כי מחזורים זרים מתחלפים. דורון פרלמן 10:39, 30 באוגוסט 2011 (IDT)
- תודה!
תרגיל 4 - שאלת בונוס 2
בשאלת הבונוס השניה בתרגיל 4, מה זה בדיוק [G,G] ו-[G,A]?
תודה מראש!;)
- אלו חבורות הקומוטטורים. אם G היא חבורה ו-A,B תת-חבורות שלה, אז [math]\displaystyle{ \ [A,B] }[/math] היא תת-החבורה של G הנוצרת על-ידי כל הקומוטטורים [math]\displaystyle{ \ [a,b] = aba^{-1}b^{-1} }[/math] עבור [math]\displaystyle{ \ a\in A, b\in B }[/math]. שימו לב שבאופן כללי, לא כל איבר של [math]\displaystyle{ \ [A,B] }[/math] הוא קומוטטור. עוזי ו. 13:36, 30 באוגוסט 2011 (IDT)
בקשר לשאלה 11
האם מתקיים ש exp(G)= lcm({ O(g)|g in G }) zzz? זה לפחות מתקיים בחבורה Sn? תודה!
- (לא מתרגל) לדעתי לא בהכרח. במשפט שלמדנו בהרצאה, ניתן היה לומר כי ה-O של מכפלה הוא ה-LCM של ה-O-ים הוא כאשר בין היתר האיברים התחלפו אחד עם השני (וגם שתת החבורות הציקליות שהם יוצרים זרות...). זה לא קורה ב-Sn בהכרח.
- תנסה אולי גישה אחרת...
- מקווה שעזרתי;)
- הטענה דווקא נכונה. בכל חבורה סופית האקספוננט הוא ה-lcm של סדרי כל האיברים (בפרט ב-Sn). נסו להוכיח זאת. דורון פרלמן 08:42, 1 בספטמבר 2011 (IDT)
- צריך להוכיח זאת לצורך התרגיל? תודה.
- לא, אתם יכולים פשוט להשתמש בזה. אני כן ממליץ (בלי קשר לתרגיל) לנסות להבין למה זה נכון. דורון פרלמן 13:26, 1 בספטמבר 2011 (IDT)
- צריך להוכיח זאת לצורך התרגיל? תודה.
- הטענה דווקא נכונה. בכל חבורה סופית האקספוננט הוא ה-lcm של סדרי כל האיברים (בפרט ב-Sn). נסו להוכיח זאת. דורון פרלמן 08:42, 1 בספטמבר 2011 (IDT)
כמה שאלות לגבי שאלה 6
1. הכוונה (ב-ב.) היא שצריך להוכיח שקיים אפימורפיזם מZ^m לG, נכון? 2. אני יכול לטעון שקבוצה מסוימת יוצרת את Z^m בלי להוכיח את זה? 3. זה טריויאלי להשתמש בעובדה שניתן להגדיר הומומורפיזם ע"י שליחת יוצר בקבוצה אחת ליוצר בקבוצה אחרת? תודה!