סיבוכיות
סיבוכיות היא דרך להשוות בין קצב גידול של פונקציות ממשיות. הסיבוכיות של פונקציה אינה מושפעת מהכפלתה בקבוע (גדול מ-0).
או גדול, אומגה, תטה
הגדרה תהיינה [math]\displaystyle{ f,g:\mathbb{N}\to\mathbb{R}_{\geq 0} }[/math] פונקציות אי שליליות מהטבעיים לממשיים.
- נאמר ש-[math]\displaystyle{ f(n)=O(g(n)) }[/math] אם קיים [math]\displaystyle{ C\gt 0 }[/math] ממשי ו-[math]\displaystyle{ n_0\in\mathbb{N} }[/math] כך ש-[math]\displaystyle{ f(n)\leq Cg(n) }[/math] לכל [math]\displaystyle{ n\gt n_0 }[/math] (הקבוע [math]\displaystyle{ C }[/math] יכול להיות גדול כרצוננו).
- נאמר ש-[math]\displaystyle{ f(n)=\Omega(g(n)) }[/math] אם קיים [math]\displaystyle{ C\gt 0 }[/math] ממשי ו-[math]\displaystyle{ n_0\in\mathbb{N} }[/math] כך ש-[math]\displaystyle{ f(n)\geq Cg(n) }[/math] לכל [math]\displaystyle{ n\gt n_0 }[/math] (הקבוע [math]\displaystyle{ C }[/math] יכול קטן גדול כרצוננו).
- נאמר ש-[math]\displaystyle{ f(n)=\Theta(g(n)) }[/math] אם [math]\displaystyle{ f(n)=O(g(n)) }[/math] וגם [math]\displaystyle{ f(n)=\Omega(g(n)) }[/math], כלומר קיימים [math]\displaystyle{ C_1,C_2\gt 0 }[/math] ממשיים ו-[math]\displaystyle{ n_0\in\mathbb{N} }[/math] כך ש-[math]\displaystyle{ C_1g(n)\leq f(n)\leq C_2g(n) }[/math] לכל [math]\displaystyle{ n\gt n_0 }[/math].