חוג הפולינומים מעל שדה
הגדרה
יהי [math]\displaystyle{ F }[/math] שדה. ביטוי פורמלי מהצורה [math]\displaystyle{ \sum_{i=0}^na_ix^i=a_0+a_1x+\ldots+a_nx^n }[/math] כאשר [math]\displaystyle{ n\geq0 }[/math] ו-[math]\displaystyle{ a_1,\ldots,a_n\in F }[/math] נקרא פולינום במשתנה [math]\displaystyle{ x }[/math] מעל [math]\displaystyle{ F }[/math]. האיברים [math]\displaystyle{ a_0,\ldots,a_n }[/math] נקראים מקדמי הפולינום.
נניח כי [math]\displaystyle{ m\leq n }[/math] אנו נתייחס אל שני פולינומים [math]\displaystyle{ \sum_{i=0}^na_ix^i,\,\sum_{j=1}^mb_jx^j }[/math] כאל שווים אם [math]\displaystyle{ a_i=b_i }[/math] עבור [math]\displaystyle{ 0\leq i\leq m }[/math] ו-[math]\displaystyle{ a_i=0 }[/math] עבור [math]\displaystyle{ m\lt i\leq n }[/math].
כל פולינום [math]\displaystyle{ f(x) }[/math] שאינו פולינום ה-0 (פולינום שכל מקדמיו הם 0) שווה לפולינום [math]\displaystyle{ a_0+a_1x+\ldots+a_nx^n }[/math] עם [math]\displaystyle{ a_n\neq 0 }[/math]. המספר [math]\displaystyle{ n }[/math] נקרא דרגת הפולינום ומסומן ב-[math]\displaystyle{ \deg f }[/math]. מעלת פולינום ה-0 לעיתים מוגדרת להיות [math]\displaystyle{ -\infty }[/math].
הערה: כל פולינום [math]\displaystyle{ f(x)=a_0+a_1x_1\ldots+a_nx^n }[/math] משרה פונקציה מ-[math]\displaystyle{ F }[/math] לעצמו ששולחת את [math]\displaystyle{ u\in F }[/math] ל-[math]\displaystyle{ f(u):=a_0+a_1u+\ldots+a_nu^n }[/math]. אם השדה [math]\displaystyle{ F }[/math] סופי, ייתכן כי שני פולינומים שונים ישרו אותה פונקציה.
אוסף הפולינומים מעל [math]\displaystyle{ F }[/math] במשתנה [math]\displaystyle{ x }[/math] יסומן ב-[math]\displaystyle{ F[x] }[/math].
מגידירים על [math]\displaystyle{ F[x] }[/math] חיבור וכפל על ידי הנוסחאות:
- [math]\displaystyle{ \sum_{i=0}^na_ix^i+\sum_{i=1}^nb_ix^n=\sum_{i=1}^n(a_i+b_i)x^n }[/math].
- [math]\displaystyle{ \sum_{i=0}^na_ix^i\cdot\sum_{j=0}^mb_jx^j=\sum_{k=0}^{m+n}\left(\sum_{0\leq i\leq n,0\leq j\leq m,m+n=k}a_ib_j\right)x^k }[/math]