אינפי 1 לתיכוניסטים תש"ע
אינפי 1 לתיכוניסטים
כאן יהיה המקום שלנו להיעזר אחד בשני בקורס חשבון אינפיניטסימלי 1. אתם מוזמנים לשאול שאלות ולדון בבעיות הנוגעות לקורס אינפי 1 - סטודנטים הלומדים בשתי הקבוצות מוזמנים להגיב כאן.
ארכיון
שאלות
שאלה
אני לא בטוח במשהו: במבחן ד'אלמבר , כתוב במייזלר שהטור מתבדר אם החלוקה גדולה או שווה ל 1. אני זוכר שהמתרגל פעם קיבל שהחלוקה שווה ל 1 אבל אמר שזה לא אומר כלום. אז מה נכון?
תשובה
אני אסביר. אם [math]\displaystyle{ \forall n : \frac{a_{n+1}}{a_n}\geq 1 }[/math] זה אומר שהסדרה מונוטונית עולה. מכיוון שהיא חיובית, זה אומר שהיא בהכרח לא שואפת לאפס ולכן הטור מתבדר.
לעומת זאת, אם [math]\displaystyle{ \lim_{n\rightarrow \infty}\frac{a_{n+1}}{a_n}=1 }[/math] לא ניתן לדעת אם הטור מתכנס, משמע יש דוגמאות לשני הכיוונים. הטור ההרמוני [math]\displaystyle{ \sum \frac{1}{n} }[/math] מקיים את התכונה הזו ומתבדר, ואילו הטור [math]\displaystyle{ \sum \frac{1}{n^2} }[/math] מקיים את התכונה הזו ומתכנס ([math]\displaystyle{ \lim_{n\rightarrow \infty}\frac{n^2}{(n+1)^2}=1 }[/math])
שאלה
איך אני מראה שלמשוואה tg x = x יש אינסוף פתרונות ממשיים?
תשובה
[math]\displaystyle{ \lim_{x\rightarrow \frac{\pi}{2} +\pi k}tgx - x= \lim_{x\rightarrow \frac{\pi}{2} +\pi k}\frac{sinx}{cosx} - x = \pm \infty }[/math]
ולכן לפי משפט ערך הביניים כל ערך ממשי מתקבל בין השאיפה לאינסוף ומינוס אינסוף, וזה קורה אינסוף פעמים (לכל k). בפרט, 0 מתקבל אינסוף פעמים, ולכן [math]\displaystyle{ tgx=x }[/math] אינסוף פעמים.
שאלה
האם פונ' חח"ע ועל היא מונוטונית?
תשובה
רציפה או לא? קח את x על הרציונליים, ו2x על האי רציונליים, חח"ע ועל ואינה מונוטונית.
אם היא רציפה, היא חייבת להיות מונוטונית לפי משפט ערך הביניים (תרגיל) ואפילו לא צריך את העל.