פתרון אינפי 1, תשס"ב, מועד א,
(המבחן)
1) התשובה היא ב'. שלא כמו בלמה של קנטור, חסרה ההנחה של שאיפת גודל ההפרש לאפס. דוגמה: [math]\displaystyle{ a_n=2(1+\frac{1}{n}) }[/math], [math]\displaystyle{ b_n=-2(1+\frac{1}{n}) }[/math].
2) התשובה היא ב'.
הפרכה לג', ד': [math]\displaystyle{ a_n=1/n }[/math]. ברור [math]\displaystyle{ a_n \to \infty }[/math] אבל [math]\displaystyle{ \lim_{n \to \infty }{\sqrt[n]{a_n}}=1 }[/math].
אותה סדרה היא גם הפרכה טריוויאלית לסעיף א'.
ב' נכון שכן [math]\displaystyle{ \frac{1}{|a_n|} \to \infty }[/math].
3) ד'. [math]\displaystyle{ \infty }[/math] או 0 נק'. שתי דוגמאות:
[math]\displaystyle{ a_n=n }[/math], [math]\displaystyle{ a_n=1+1/n }[/math]. באחת יש אינסוף נקודות
(סדרה מתכנסת ולכן חסומה, ולכן כל מה שגדול מהחסם העליון שלה), בשנייה בשלילה יש נקודה [math]\displaystyle{ x=c }[/math] בחיתוך ונתבונן במקום [math]\displaystyle{ n=c+1 }[/math], שלא מכיל את c כלל, בסתירה.
4) התשובה היא ד'. הפרכה לא', ב', ג': נגדיר [math]\displaystyle{ f(x)=\left\{\begin{matrix} x+2 &x\neq 9 \\ x+3 & x=9 \end{matrix}\right. }[/math], [math]\displaystyle{ g(x)=\left\{\begin{matrix} x+3 &x\neq 9 \\ x+2 & x=9 \end{matrix}\right. }[/math]
אז ברור שההרכבה רציפה, שכן [math]\displaystyle{ f(g(x))=\left\{\begin{matrix} x+5 &x\neq 9 \\ x+5 & x=9 \end{matrix}\right.=x+5 }[/math] והוכחנו רציפות כל הפונקציות הליניאריות.
גם f וגם g אינן רציפות ב-9, ולכן זאת הפרכה לג' והוכחה לד'.
5) עבור r=1 מקבלים טור מתכנס לפי לייבניץ, מה שפוסל את ג',ד'. עבור r=0 הטור מתכנס (ל0) מה שפוסל את ב'. עבור r=-1 מקבלים [math]\displaystyle{ \frac{1}{n^{\frac{1}{2}}} }[/math], שמתבדר לפי העיבוי כי 1/2<1. פוסל את א', לכן נותרנו רק עם ה', שהיא התשובה הנכונה. (ישירות, נראה שהטור מתכנס בהחלט עבור [math]\displaystyle{ -1\lt r\lt 1 }[/math], ובפרט מתכנס, ואז נבדוק את המקרים הנותרים.)
6 הורוביץ) ברור שב'. הפרכה לא',ג': [math]\displaystyle{ f(x)=\left\{\begin{matrix} \frac{x}{2} & x\leq4 \\ 4x & else \end{matrix}\right. }[/math] עולה ממש ואינה רציפה בקטע [math]\displaystyle{ (-152.3,17) }[/math].
הוכחת ב': בשלילה, [math]\displaystyle{ \exists x_1,x_2 \in \mathbb{R}:x1 \neq x_2 \wedge f(x_1) = f(x_2) }[/math].
בסתירה לכך ש [math]\displaystyle{ f }[/math] עולה ממש, שהרי בה"כ [math]\displaystyle{ x_1\lt x_2 }[/math] ולכן [math]\displaystyle{ f(x_1) \lt f(x_2) }[/math] בסתירה להיותם שווים.
7) [math]\displaystyle{ f(x)=\frac{1+xcosx}{x+2} }[/math].
[math]\displaystyle{ f'(x)=\frac{(1+xcosx)'(x+2)-(1+xcosx)(x+2)'}{(x+2)^2}=\frac{(cosx-xsinx)(x+2)-(1+xcosx)}{(x+2)^2}\frac{= xcosx-x^2sinx+2cosx-2xsinx-1-xcosx}{(x+2)^2} }[/math]
[math]\displaystyle{ f'(0)=\frac{-0^2sin0+2cos0-0sin0-1}{(0+2)^2}=\frac{2-1}{2^2}=\frac{1}{4} }[/math]
זהו שיפוע המשיק.
כעת, נציב במש' ישר עם הנקודה [math]\displaystyle{ (0,\frac{1}{2}) }[/math], ונקבל: [math]\displaystyle{ y=\frac{1}{2}+\frac{1}{4}x }[/math].
8) היה במערכי התרגול. הראינו שהיא עולה וחסומה.
9) בשביל לבדוק התכנסות בהחלט, נשתמש במבחן קושי: נחפש את הגבול העליון של [math]\displaystyle{ 8(\frac{n}{n+2})^n }[/math].
[math]\displaystyle{ 8(\frac{n}{n+2})^n=8(1-\frac{2}{n+2})^n=8(1-\frac{1}{\frac{n+2}{2}})^{\frac{(n+2)}{2}\cdot 2-2}=8((1-\frac{1}{\frac{n+2}{2}})^{\frac{(n+2)}{2}})^2\cdot (1-\frac{1}{\frac{n+2}{2}})^{-2} }[/math]
קיבלנו גורם 8, גורם [math]\displaystyle{ (e^{-1})^2 }[/math], וגורם 1. לכן הגבול, ובפרט הגבול העליון, הוא [math]\displaystyle{ \frac{8}{e^2}\gt 1 }[/math], ולכן הטור הנתון אינו מתכנס בהחלט.