פתרון אינפי 1, תשס"ג, מועד ב,

מתוך Math-Wiki
גרסה מ־12:37, 1 בפברואר 2012 מאת עמנואל (שיחה | תרומות) (יצירת דף עם התוכן "1) נכון. זאת ההגדרה. 2)נכון. נתבונן בסדרת הסכומים החלקיים: מכיוון שהטור חיובי היא עולה במובן ...")
(הבדל) → הגרסה הקודמת | הגרסה האחרונה (הבדל) | הגרסה הבאה ← (הבדל)

1) נכון. זאת ההגדרה.

2)נכון. נתבונן בסדרת הסכומים החלקיים: מכיוון שהטור חיובי היא עולה במובן החלש (אינדוקצייה טריוויאלית - מוסיפים איברים אי-שליליים). נתון שהיא חסומה. סדרה זאת היא חסומה ומונוטונית ולכן מתכנסת, ולכן הטור מתכנס עפ"י הגדרה.


6) הוכחה: רוצים להראות שהפונקצייה [math]\displaystyle{ f|_{R^+} }[/math] היא על. (זה שילוב סימנים מאינפי, בדידה ולינארית... XD)

יהי [math]\displaystyle{ y\gt 0 }[/math]. נגדיר [math]\displaystyle{ h(x)=\frac{x^5-x}{x^2+1}-y }[/math]. [math]\displaystyle{ h(0)=-y\lt 0 }[/math], ואילו מכיוון ש [math]\displaystyle{ \lim_{x \to \infty }f(x)=\lim_{x \to \infty }{}\frac{x^5-x}{x^2+1}-y=+\infty }[/math], קיימת נקודה d עבורה [math]\displaystyle{ h(d)\gt 0 }[/math]. לפי משפט ערך הביניים, יש נקודה [math]\displaystyle{ x }[/math] בקטע [math]\displaystyle{ (0,d) }[/math] שבה [math]\displaystyle{ h(x)=0 }[/math], כלומר [math]\displaystyle{ f(x)=y }[/math]!


7) הפרכה: נתבונן בפונ' f(x)=\left\{\begin{matrix} 1 &x\geq 3 \\ -1 & x<3 \end{matrix}\right בקטע [math]\displaystyle{ I=\mathbb{R} }[/math]. ברור ש[math]\displaystyle{ f }[/math] אינה רציפה ב3, משום שהגבולות החד-צדדיים שונים, אבל [math]\displaystyle{ f^2 }[/math] היא קבועה ולכן רציפה בכל הישר הממשי.