פתרון אינפי 1, תשס"ג, מועד ב,
1) נכון. זאת ההגדרה.
2)נכון. נתבונן בסדרת הסכומים החלקיים: מכיוון שהטור חיובי היא עולה במובן החלש (אינדוקצייה טריוויאלית - מוסיפים איברים אי-שליליים). נתון שהיא חסומה. סדרה זאת היא חסומה ומונוטונית ולכן מתכנסת, ולכן הטור מתכנס עפ"י הגדרה.
6) הוכחה: רוצים להראות שהפונקצייה [math]\displaystyle{ f|_{R^+} }[/math] היא על. (זה שילוב סימנים מאינפי, בדידה ולינארית... XD)
יהי [math]\displaystyle{ y\gt 0 }[/math]. נגדיר [math]\displaystyle{ h(x)=\frac{x^5-x}{x^2+1}-y }[/math]. [math]\displaystyle{ h(0)=-y\lt 0 }[/math], ואילו מכיוון ש [math]\displaystyle{ \lim_{x \to \infty }f(x)=\lim_{x \to \infty }{}\frac{x^5-x}{x^2+1}-y=+\infty }[/math], קיימת נקודה d עבורה [math]\displaystyle{ h(d)\gt 0 }[/math]. לפי משפט ערך הביניים, יש נקודה [math]\displaystyle{ x }[/math] בקטע [math]\displaystyle{ (0,d) }[/math] שבה [math]\displaystyle{ h(x)=0 }[/math], כלומר [math]\displaystyle{ f(x)=y }[/math]!
7) הפרכה: נתבונן בפונ' f(x)=\left\{\begin{matrix}
1 &x\geq 3 \\
-1 & x<3
\end{matrix}\right בקטע [math]\displaystyle{ I=\mathbb{R} }[/math]. ברור ש[math]\displaystyle{ f }[/math] אינה רציפה ב3, משום שהגבולות החד-צדדיים שונים, אבל [math]\displaystyle{ f^2 }[/math] היא קבועה ולכן רציפה בכל הישר הממשי.