פתרון אינפי 1, תשס"ג, מועד ב,

מתוך Math-Wiki

1) נכון. זאת ההגדרה.

2)נכון. נתבונן בסדרת הסכומים החלקיים: מכיוון שהטור חיובי היא עולה במובן החלש (אינדוקצייה טריוויאלית - מוסיפים איברים אי-שליליים). נתון שהיא חסומה. סדרה זאת היא חסומה ומונוטונית ולכן מתכנסת, ולכן הטור מתכנס עפ"י הגדרה.


5) הוכחה: יהי [math]\displaystyle{ \epsilon\gt 0 }[/math].

[math]\displaystyle{ \lim_{n \to \infty }{}a_n+b_n=a+b\Rightarrow \exists N_1 \in \mathbb{N}:\forall n \in \mathbb{N}: (n\geq N\rightarrow |a_n+b_n-(a+b)|\lt \epsilon }[/math]

[math]\displaystyle{ \lim_{n \to \infty }{}a_n-b_n=a-b\Rightarrow \exists N_1 \in \mathbb{N}:\forall n \in \mathbb{N}: (n\geq N\rightarrow |a_n-b_n-(a-b)|\lt \epsilon ) }[/math]

נגדיר: [math]\displaystyle{ N\overset{\underset{\mathrm{def}}{}}{=}max\left \{ N_1,N_2 \right \} }[/math].


אז לכל [math]\displaystyle{ n \geq N }[/math] מתקיים [math]\displaystyle{ |a_n+b_n-(a+b)|\lt \epsilon \wedge |a_n-b_n-(a-b)|\lt \epsilon ) }[/math], כלומר [math]\displaystyle{ |a_n-a+b_n-b|\lt \epsilon \wedge |a_n-a-(b_n-b)|\lt \epsilon }[/math],

נחבר את שני האי-שוויונים: [math]\displaystyle{ |a_n-a+b_n-b|+|a_n-a-(b_n-b)|\lt 2\epsilon }[/math]

אבל לפי אי-שוויון המשולש [math]\displaystyle{ 2|a_n-a|=|2(a_n-a)|=|a_n-a+b_n-b+a_n-a-(b_n-b)| \leq |a_n-a+b_n-b|+|a_n-a-(b_n-b)|\lt 2\epsilon }[/math]. נצמצם ב2 ונקבל ש[math]\displaystyle{ \lim_{n \to \infty }{a_n}=a }[/math]. כעת נחסר את המשוואות במקום לחבר, ונקבל באותו האופן עבור b.

מש"ל! (התרגיל הזה והתרגיל הבא די יפים :))


6) הוכחה: רוצים להראות שהפונקצייה [math]\displaystyle{ f|_{R^+} }[/math] היא על. (זה שילוב סימנים מאינפי, בדידה ולינארית... XD)

יהי [math]\displaystyle{ y\gt 0 }[/math]. נגדיר [math]\displaystyle{ h(x)=\frac{x^5-x}{x^2+1}-y }[/math]. [math]\displaystyle{ h(0)=-y\lt 0 }[/math], ואילו מכיוון ש [math]\displaystyle{ \lim_{x \to \infty }f(x)=\lim_{x \to \infty }{}\frac{x^5-x}{x^2+1}-y=+\infty }[/math], קיימת נקודה d עבורה [math]\displaystyle{ h(d)\gt 0 }[/math]. לפי משפט ערך הביניים, יש נקודה [math]\displaystyle{ x }[/math] בקטע [math]\displaystyle{ (0,d) }[/math] שבה [math]\displaystyle{ h(x)=0 }[/math], כלומר [math]\displaystyle{ f(x)=y }[/math]!


7) הפרכה: נתבונן בפונ' [math]\displaystyle{ f(x)=\left\{\begin{matrix} 1 &x\geq 3 \\ -1 & x\lt 3 \end{matrix}\right. }[/math] בקטע [math]\displaystyle{ I=\mathbb{R} }[/math].

ברור ש[math]\displaystyle{ f }[/math] אינה רציפה ב3, משום שהגבולות החד-צדדיים שונים, אבל [math]\displaystyle{ f^2 }[/math] היא קבועה ולכן רציפה בכל הישר הממשי.