פתרון אינפי 1, תשס"ה, מועד ב,

מתוך Math-Wiki
גרסה מ־14:50, 5 בפברואר 2012 מאת עמנואל (שיחה | תרומות)
(הבדל) → הגרסה הקודמת | הגרסה האחרונה (הבדל) | הגרסה הבאה ← (הבדל)

(המבחן )


שאלה 1

א)[math]\displaystyle{ \lim_{x\rightarrow \infty }\frac{e^{ln^2(x)}}{e^{\sqrt{x}}} }[/math]

אינטואיטיבית, שורש 'גובר' על לוגריתם ולכן אנחנו רוצים להראות שהגבול שווה 0.

מתקיים [math]\displaystyle{ \lim_{x\rightarrow \infty }\frac{e^{ln^2(x)}}{e^{\sqrt{x}}}=\lim_{x\rightarrow \infty }e^{ln^2(x)-\sqrt{x}} }[/math]. מכיוון שפונ' האקספוננט רציפה, [math]\displaystyle{ \lim_{x\rightarrow \infty }\frac{e^{ln^2(x)}}{e^{\sqrt{x}}}=e^{\lim_{x\rightarrow \infty }(ln^2(x)-\sqrt{x})} }[/math] (אם קיימים).

לכן נתבונן במעריך: [math]\displaystyle{ \lim_{x\rightarrow \infty }(ln^2(x)-\sqrt{x}) }[/math].


שאלה 2

שאלה 3

שאלה 4

שאלה 5