המשפט היסודי של החשבון האינטגרלי
המשפט
תהי [math]\displaystyle{ f(x) }[/math] מוגדרת, חסומה ואינטגרבילית ב-[math]\displaystyle{ [a,b] }[/math]. נגדיר גם: [math]\displaystyle{ \forall x \in [a,b]: A(x):= \int_{a}^{x} f(t)dt }[/math] . אזי מתקיים:
א) [math]\displaystyle{ A(x) }[/math] רציפה.
ב)לכל [math]\displaystyle{ x_{0} \in [a,b] }[/math] שבו [math]\displaystyle{ f(x_{0}) }[/math] רציפה, [math]\displaystyle{ A(x) }[/math] גזירה ו- [math]\displaystyle{ A'(x_{0})=f(x_{0}) }[/math].
ג) אם [math]\displaystyle{ f(x) }[/math] רציפה בכל [math]\displaystyle{ [a,b] }[/math], ו-F פונקציה קדומה של f, מתקיימת נוסחת ניוטון-לייבניץ: [math]\displaystyle{ \int_{a}^{b} f(x)dx=F(b)-F(a) }[/math].