אינטגרל לא מסויים/דוגמאות

מתוך Math-Wiki
הגרסה להדפסה אינה נתמכת עוד וייתכן שיש בה שגיאות תיצוג. נא לעדכן את הסימניות בדפדפן שלך ולהשתמש בפעולת ההדפסה הרגילה של הדפדפן במקום זה.

1

[math]\displaystyle{ \int \frac{1}{x} dx = ln|x|+c }[/math]

2

[math]\displaystyle{ \int \frac{dx}{\sqrt{x^{2}-4x-5}} }[/math]

פתרון

השלמה לריבוע והצבה ראשונה:

הדבר הראשון שנעשה הוא התהליך של השלמה לריבוע, שבסופו נקבל כי:

[math]\displaystyle{ x^{2}-4x-5=(x-2)^{2}-9 }[/math]

ולכן ההצבה הראשונה שנעשה תהא: [math]\displaystyle{ u=x-2 }[/math], וכמובן קל להבין כי [math]\displaystyle{ dx=du }[/math].

[math]\displaystyle{ \int \frac{dx}{\sqrt{x^{2}-4x-5}}=\int \frac{du}{\sqrt{u^{2}-9}} }[/math]


פונקציות טריגונומטריות היפרבוליות (הערה):

ניעזר בתכונות של [math]\displaystyle{ sinh(x) }[/math] ושל [math]\displaystyle{ cosh(x) }[/math]:

[math]\displaystyle{ (cosh(x))'=sinh(x)=\int cosh(x)dx }[/math]

וכן בזהות: [math]\displaystyle{ cosh^{2}(x)=sinh^{2}(x)+1 }[/math]


הצבה שנייה:

נציב: [math]\displaystyle{ u=3cosh(t)\Rightarrow du=3sinh(t)dt }[/math]

[math]\displaystyle{ \int \frac{dx}{\sqrt{x^{2}-4x-5}}=\int \frac{du}{\sqrt{u^{2}-9}}=\int \frac{3sinh(t)dt}{\sqrt{9cosh^{2}(t)-9}}=\int \frac{3sinh(t)dt}{3sinh(t)}=\int dt=t+C }[/math]

ולהחזיר את t לx, אני משאיר לכם (:

3

האינטגרל הבא לקוח מספר התרגילים של בועז צבאן (1.24, אם אינני טועה)

[math]\displaystyle{ \int \frac{sin^{2}(x)}{cos^{6}(x)}dx }[/math]

פתרון

[math]\displaystyle{ \int \frac{sin^{2}(x)}{cos^{6}(x)}dx=\begin{Bmatrix} t=tanx\\ dt=\frac{dx}{cos^{2}(x)} \end{Bmatrix} =\begin{Bmatrix} sin^{2}x=\frac{t^{2}}{t^{2}+1}\\ cos^{2}x=\frac{1}{t^{2}+1} \end{Bmatrix} =\int \frac{\frac{t^{2}}{t^{2}+1}}{\frac{1}{(t^2+1)^{2}}}dt= }[/math]

[math]\displaystyle{ \int \frac{sin^{2}(x)}{cos^{6}(x)}dx =\int \frac{\frac{t^{2}}{t^{2}+1}}{\frac{1}{(t^2+1)^{2}}}dt=\int t^{2}(t^{2}+1)dt=\cdots =\frac{t^{5}}{5}+\frac{t^{3}}{3}+c }[/math]

יש טעות בהצבה של [math]\displaystyle{ cos^{2}x }[/math], שכן [math]\displaystyle{ cos^{6}x=(cos^{2}x)^3=\frac{1}{(t^2+1)^3} }[/math]
אבל צריך לקחת בחשבון גם את הdt
צודק. נראה לי שאם אני לא ראיתי את זה, גם אחרים לא יראו ;)

4

בדומה לאינטגרל הקודם, לקוח מבועז צבאן (1.27)

[math]\displaystyle{ \int \sqrt{2-x-x^{2}}dx }[/math]

דרך א'

א. ניתן להשתמש בהצבת אוילר, אבל אנחנו ננקוט בטקטיקה שונה.

[math]\displaystyle{ \int \sqrt{2-x-x^{2}}dx=\int \sqrt{1.5^{2}-(x+0.5)^{2}}dx=\int \sqrt{1.5^{2}-u^{2}}du }[/math]


הצבה ראשונה: [math]\displaystyle{ u=x+0.5\Rightarrow dx=du }[/math]


הצבה שנייה: [math]\displaystyle{ u=1.5sint\Rightarrow du=1.5costdt }[/math]


ואם נחזור לחישוב האינטגרל,

[math]\displaystyle{ \int \sqrt{1.5^{2}-u^{2}}du=\int 1.5\sqrt{1-sin^{2}(t)} \cdot 1.5cos(t)dt=2.25\int cos^{2}(t)dt=2.25\int\frac{cos2t-1}{2}dt=2.25(\frac{sin2t}{4}-\frac{t}{2})+c }[/math]

ומכאן מעבירים את t לx.

דרך ב'

ההצבה הראשונה נשארת כפי שהייתה, אך הפעם לא נעשה הצבה שניה אלא נשתמש באינטגרציה בחלקים:

[math]\displaystyle{ \int \sqrt{1.5^{2}-u^{2}}du=\int (u)'\sqrt{1.5^{2}-u^{2}}du=u\sqrt{1.5^{2}-u^{2}}+\int \frac{u^{2}du}{\sqrt{1.5^{2}-u^{2}}} }[/math]


כעת נוכל להבחין כי מתקיים:


[math]\displaystyle{ \int \frac{u^{2}du}{\sqrt{1.5^{2}-u^{2}}}=\int \frac{u^{2}-1.5^{2}+1.5^{2}}{\sqrt{1.5^{2}-u^{2}}}du=\int\frac{1.5^{2}}{\sqrt{1.5^{2}-u^{2}}}du-\int\sqrt{1.5^{2}-u^{2}}du }[/math]


כעת נביט רק על האינטגרל הראשון ונציב: [math]\displaystyle{ 1.5v=u }[/math]

[math]\displaystyle{ \int\frac{1.5^{2}}{\sqrt{1.5^{2}-u^{2}}}du=1.5^{2}\int \frac{1.5dv}{1.5\sqrt{1-v^{2}}}=1.5^{2}arcsin(v)=2.25arcsin(\frac{2u}{3})+c }[/math]

אם נחזור לאינטגרל המקורי נקבל:

[math]\displaystyle{ \int \sqrt{1.5^{2}-u^{2}}du=u\sqrt{1.5^{2}-u^{2}}+2.25arcsin(\frac{2u}{3})-\int \sqrt{1.5^{2}-u^{2}}du }[/math]

[math]\displaystyle{ 2\int \sqrt{1.5^{2}-u^{2}}du=u\sqrt{1.5^{2}-u^{2}}+2.25arcsin(\frac{2u}{3})+c }[/math]

וסיימנו (:

5

אינטגרל חביב שנלקח ממבחן בחדו"א בב"ג (של מדעי המחשב)

[math]\displaystyle{ \int \frac{dx}{x+\sqrt[n]{x}} }[/math] כאשר [math]\displaystyle{ n\in\mathbb{N} }[/math].

פתרון

הכוונה היא עבור n>1, עבור n=1 תסתכלו בדוגמא הראשונה.

[math]\displaystyle{ \int \frac{dx}{x+\sqrt [n]{x}}=\begin{Bmatrix} t^{n}=x\\ nt^{n-1}dt=dx \end{Bmatrix} =\int \frac{nt^{n-1}}{t^{n}+t}dt=n\int \frac{t^{n-2}}{t^{n-1}+1}dt= \begin{Bmatrix} k=t^{n-1}+1\\ dk=(n-1)t^{n-2}dt \end{Bmatrix}= }[/math]


[math]\displaystyle{ \int \frac{dx}{x+\sqrt [n]{x}}=\frac{n}{n-1}\int \frac{dk}{k}=\frac{n}{n-1}ln|k|+c= \frac{n}{n-1}ln|x^{\frac {n-1}{n}}+1|+c }[/math]

6

[math]\displaystyle{ \int \frac{arctan(e^{x})}{e^{x}}dx }[/math]

פתרון

ניעזר באינטגרציה בחלקים.

[math]\displaystyle{ \int \frac{arctan(e^{x})}{e^{x}}dx=\int arctan(e^{x})e^{-x}dx=\begin{Bmatrix} du=e^{-x}dx\Rightarrow u=-e^{-x}\\ v=arctan(e^{x})\Rightarrow dv=\frac{e^{x}dx}{1+e^{2x}} \end{Bmatrix} =-e^{-x}arctan(e^{x})+\int\frac{dx}{1+e^{2x}} }[/math]


פתאום זה נראה יותר אנושי, כעת נסתכל על האינטגרל שנותר:

[math]\displaystyle{ \int\frac{dx}{1+e^{2x}}=\begin{Bmatrix} t=e^{2x}\\ dt=2tdx \end{Bmatrix}= \int \frac{dt}{2t(1+t)}=\int \frac{dt}{2t}-\int \frac{dt}{2t+2}=0.5(ln|2t|-ln|2t+2|+c)=0.5ln(2e^{2x})-0.5ln(2e^{2x}+2)+c }[/math]

כל שנותר הוא לאחד את התוצאות, ולקבל את התוצאה הסופית.

7

[math]\displaystyle{ \int \frac{\sqrt{x^{2}-16}}{x}dx }[/math]

פתרון

נעשה את ההצבה הבאה: [math]\displaystyle{ x=\frac{4}{cosu}\Rightarrow dx=\frac{4sinu}{cos^{2}u}du }[/math]

[math]\displaystyle{ \int \frac{\sqrt{x^{2}-16}}{x}dx=\int \frac{\sqrt{\frac{16}{cos^{2}u}-16}}{\frac{4}{cosu}}\cdot \frac{4sinu}{cos^{2}u}du=\int 4tan^{2}udu=\int (4tan^{2}+4-4)udu=4tanu-4u+c }[/math]

תחזירו לx לבד, בכל מקרה אני עצלן ואף אחד לא יקרא את זה!

8

אחד קליל מהחוברת של בועז (:,

[math]\displaystyle{ \int \frac{dx}{x}ln\frac{1}{x} }[/math]

פתרון

[math]\displaystyle{ \int \frac{dx}{x}ln\frac{1}{x}=-\int \frac{lnx}{x}dx= -\frac{ln^{2}x}{2}+c }[/math]

9

[math]\displaystyle{ \int \frac{arcsinx}{x^{2}}dx }[/math]

פתרון

ראשית נפעיל אינטגרציה בחלקים כאשר: [math]\displaystyle{ v=arcsinx,du=\frac{dx}{x^{2}} }[/math]

[math]\displaystyle{ \int \frac{arcsinx}{x^{2}}dx=-\frac{arcsinx}{x}+\int \frac{dx}{x\sqrt{1-x^{2}}} }[/math]


כעת נחשב את האינטגרל השני שקיבלנו:

[math]\displaystyle{ \int \frac{dx}{x\sqrt{1-x^{2}}}=\begin{Bmatrix} x=cosu\\ dx=sinudu \end{Bmatrix}= \int \frac{sinu}{cosu\sqrt{1-cos^{2}u}}du=\int \frac{du}{cosu}= }[/math]


וכעת ניעזר בהצבה האוניברסלית כדי למצוא את האינטגרל החדש:

[math]\displaystyle{ \int \frac{du}{cosu}=\int \frac{2}{1+t^{2}}\cdot \frac{1+t^{2}}{1-t^{2}}dt=\int \frac{2dt}{(1+t)(1-t)}=\int\frac{dt}{1-t}+\frac{dt}{1+t}=ln|1+t|-ln|1-t|+c=ln\frac{1+t}{1-t}+c }[/math]

כרגיל להחזיר ולהנות (:

10

[math]\displaystyle{ \int x^2\sqrt{a^2-x^2}dx }[/math]

הצבה [math]\displaystyle{ x=asin(t) }[/math]

11

[math]\displaystyle{ \int x^2\sqrt{a^2+x^2}dx }[/math]

הצבה היפרבולית [math]\displaystyle{ x=asinh(t) }[/math].

נוסחאות לפונקציות היפרבוליות

12

[math]\displaystyle{ \int \frac{sinx\cdot cosx}{\sqrt{asin^{2}x+bcos^{2}x}}dx }[/math]

פתרון

[math]\displaystyle{ \int \frac{sinx\cdot cosx}{\sqrt{asin^{2}x+bcos^{2}x}}dx=\int\frac{sinx\cdot cosx}{\sqrt{(a-b)sin^{2}x+b}}dx=\begin{Bmatrix} t=sinx\\ dt=cosxdx \end{Bmatrix}= \int \frac{tdt}{\sqrt{(a-b)t^{2}+b}}=\begin{Bmatrix} u=(a-b)t^{2}+b\\ du=2(a-b)tdt \end{Bmatrix}= }[/math]


[math]\displaystyle{ \frac{1}{2a-2b}\int\frac{du}{\sqrt{u}}=\frac{1}{a-b}\sqrt{u}+c=\frac{1}{a-b}\sqrt{(a-b)t^{2}+b}+c=\frac{1}{a-b}\sqrt{(a-b)sin^{2}x+b}+c }[/math]

פתרון (יותר מוצלח כמסתבר)

להציב [math]\displaystyle{ t=asin^{2}x+bcos^{2}x }[/math]

13

[math]\displaystyle{ \int \sqrt {\tan ^2(x)+2} dx }[/math]

פתרון (לא מלא)

זה לקח לי שני עמודים בכתב יד, זה נורא (אני בטוח שיש פתרון יותר חכם)

הצבה 1: [math]\displaystyle{ t=tanx }[/math]


הצבה 2: [math]\displaystyle{ t=\sqrt{2}sinhu }[/math]


אח"כ צריך לשחק עם מה שמקבלים (לפי תכונות של קוסינוס וסינוס היפרבולי), ואז להעביר את זה לייצוג המקורי.


ואז, הצבה 3: [math]\displaystyle{ k=e^{2u} }[/math]


מכאן זו פונקציה רצינואלית של ליניארי חלקי פולינום ממעלה 2, זה לא בעיה בהשוואה למה שהלך למעלה.

במקרה הכי גרוע, תהיה הצבה 4.

14

[math]\displaystyle{ \int \frac{1}{\sqrt[4]{sin(x)^3cos(x)^5}} dx }[/math]

פתרון

זה הפתרון: [math]\displaystyle{ f(x)=\alpha \sqrt[4]{tanx} }[/math] (לא סגור על הקבוע), אני אעלה את הפתרון המלא בהמשך השבוע.

15

[math]\displaystyle{ \int \frac{ln(x)-1}{ln(x)^2} dx }[/math]

פתרון

(קרדיט מלא לסורקין) תוקן! סורקין לא סרוקין ולא צריך קרדיט...


[math]\displaystyle{ \int \frac {ln(x)-1}{ln(x)^2} dx=\int \frac {ln(x)}{ln(x)^2} dx - \int \frac {1}{ln(x)^2}dx =\int \frac {dx}{ln(x)}- \int \frac {dx}{ln(x)^2} }[/math]


כעת נתמקד באינטגרל הראשון, נפעיל אינטגרציה בחלקים:

[math]\displaystyle{ \int \frac{dx}{lnx}=\begin{Bmatrix} u=x &du=dx \\ v=\frac{1}{lnx} &dv=-\frac{dx}{xln^{2}x} \end{Bmatrix}=\frac{x}{lnx}+\int \frac{dx}{ln^{2}x} }[/math]


ונשים לי כי מתקיים (באופן די מגניב):

[math]\displaystyle{ \int \frac{lnx-1}{ln^{2}x}dx=\int \frac{dx}{lnx} - \int \frac{dx}{ln^{2}x}=\frac{x}{lnx}+c }[/math]

16

[math]\displaystyle{ \int \sqrt {frac {1-sqrt[3]{x}}{1+sqrt[3]{x}}} \ frac{dx}{x} }[/math]