שיחה:88-112 לינארית 1 תיכוניסטים קיץ תשעב

מתוך Math-Wiki

חזרה לדף הקורס


גלול לתחתית העמוד


הוספת שאלה חדשה

הוסף שאלה חדשה (רשום כותרת לשאלה, רשום את תוכן השאלה ולחץ על שמירה למטה מימין לסיום).

-עזרה על עיצוב הטקסט וכתיב מתמטי תוכלו למצוא כאן

אם אתם רוצים לשאול שאלה עליכם ליצור חשבון משתמש באתר.

שאלות

תשובה במשוואה מרוכבת

טקסט לא מעוצב האם פתרון של משוואה מרוכבת יכול לצאת עם שורש i ?


תשובה: הפתרון (או פתרונות) למשוואה מרוכבת צריך להיות מוצג בצורה [math]\displaystyle{ a+bi }[/math] כאשר [math]\displaystyle{ a,b\in \mathbb{R} }[/math].

בלי שורש [math]\displaystyle{ i }[/math].--איתמר שטיין 22:02, 16 ביולי 2012 (IDT)

שאלה 7 בתרגיל 1, טקסט לא מובן

האם הנקודה האחרונה היא (t,4)? אם כן, האם צריך לבטא בעזרת הפרמטר t ?


תשובה: אכן, הנקודה האחרונה היא [math]\displaystyle{ (t,4) }[/math]. יש לבטא את התשובה באמצעות [math]\displaystyle{ t }[/math] ולשים לב לאפשרויות השונות שיכולות להיות. --איתמר שטיין 21:53, 16 ביולי 2012 (IDT)

מערכת משוואות

האם אני חייב לפתור את המערכת משוואות בעזרת מטריצה או שאני יכול לפתור אותן בדרך הישנה כמו שמלמדים בתיכון (בדרך של הצבה). (שאלות 7-9)


תשובה: המטרה היא לתרגל דירוג מטריצות, אז כן, צריך להשתמש במטריצות. --איתמר שטיין 23:33, 17 ביולי 2012 (IDT)

תרגיל 1 שאלה 9

אין שום הבדל בין שאלה 8 ל9 מבחינת דרך הפיתרון (רק השדה שונה) . צריך לפתור את שאלה 9 בדרך שונה משאלה 8? או לפתור אותה בדיוק כמו שאלה 8?


תשובה: אני לא יכול להגיד באיזה דרך צריך לפתור.

צריך לפתור את שאלה 9 ולהגיע לתשובה נכונה.

אם נראה לך שאותה דרך של שאלה 8 עובדת בשאלה 9, אז תשתמש באותה דרך.

אם נראה לך שאותה דרך של שאלה 8 לא עובדת, אז תשתמש בדרך אחרת.

--איתמר שטיין 10:31, 19 ביולי 2012 (IDT)

כמה שאלות לגבי התרגילים

1. האם אני צריך להראות את צורת הפתרון הסופי כאשר יש אינסוף פתרונות? 2. האם אני יכול להניח ב8 ש [math]\displaystyle{ b }[/math] שונה מאפס? 3. איך אני אמור לפתור את 9 אם אני לא יודע אם a גדול או קטן מ7 (מבחינת מודול)


כמה תשובות:

1) כן.

2) לא. אבל אתה יכול להפריד למקרים.

3) זה לא ממש אמור לשנות לך. [math]\displaystyle{ a }[/math] הוא איבר של [math]\displaystyle{ \mathbb{Z}_7 }[/math]. בכל מקרה במודולו [math]\displaystyle{ 7 }[/math] הוא שווה לאחד מ [math]\displaystyle{ \{0,1,\ldots,6\} }[/math] --איתמר שטיין 10:25, 19 ביולי 2012 (IDT)

תרגיל בית 1 - שאלה 9

האם אפשר להבין מכך שהמשתנים נמצאים במשוואות הנתונות שהם בין 0 ל-6 (כלומר a, a+3, a^2, b נמצאים בתחום הזה)?


תשובה: כל מספר שלם (כולל [math]\displaystyle{ a^2,a+3 }[/math] וכו') שווה במודולו 7 למספר בין 0 ל 6.--איתמר שטיין 18:27, 19 ביולי 2012 (IDT)

שאלה כללית

רק לוודאות: כשכתוב לפתור את מערכת המשוואות עם הפרמטר הכוונה למצוא פיתרון יחיד? או שהכוונה מתי אינסוף פתרונות וכו'...


תשובה: לפתור את המערכת אומר:

1) למצוא עבור איזה ערכים של הפרמטר/ים יש פתרון יחיד - ולמצוא את הפתרון.

2) למצוא עבור איזה ערכים של הפרמטר/ים אין פתרון.

3) למצוא עבור איזה ערכים של הפרמטר/ים יש אינסוף פתרונות - ולמצוא את הפתרון הכללי. --איתמר שטיין 13:27, 20 ביולי 2012 (IDT)

שאלה 5

איך אמורים לפתור את התרגיל הזה? צריך גם לחשוב על מספרים שיהיו בשדה וגם על החיבור והכפל שלהם..


תשובה: כן. צריך לקחת ארבעה מספרים או סימנים כלשהם ([math]\displaystyle{ \{0,1,2,3\} }[/math] או [math]\displaystyle{ \{a,b,c,d\} }[/math] - זה לא באמת משנה) ולהגדיר על ארבעת האיברים האלה כפל וחיבור כך שכל האקסיומות של שדה מתקיימות.--איתמר שטיין 13:29, 20 ביולי 2012 (IDT)


אבל לא משנה איך מסדרים את האיברים, יצא לנו או שדה על mod 4 - סתירה (4 לא ראשוני), או (שני איברים ניטרלים לכפל או לחיבור).

שדה עם 4 איברים לא אומר שכל האיברים שונים. שני איברים נייטרלים לחיבור אומר שהקבוצה היא לא שדה רק אם שניהם שונים, אותו דבר לגבי כפל. אלמוג אלפסה 09:53, 21 ביולי 2012 (IDT)
לא ייתכנו שני איברים נייטרלים לפעולה אחת. קל להוכיח שאיבר נייטרלי לפעולה הוא יחיד (מה יהיה סכום איברים נייטרלים שונים לחיבור?). אבל הפעולות לא חייבות להיות כמו Z ארבע, יש הרבה מאד דרכים להגדיר את הפעולות בין האיברים. אחת הדרכים תתן שדה. --ארז שיינר

אבל לא יכולים להיות איברים כפולים בשדה, כי שדה זה קבוצה, ובקבוצה מורידים איברים כפולים

רק להיות בטוח

כשאומרים פתירת מערכת מעל שדה כלשהו(נגיד Z 7), מתכוונים שרק הנעלמים שייכים לאותו השדה או שגם הפרמטרים?

הכל שייך לשדה. כלומר, אם מבקשים ממך לפתור את 31x=3 מעל Z7, קודם הייתי מוצא מה הערך של 31 ב-z7 ואז ממשיך...
אבל אם נגיד אתה מחלק 3 ב 37, אז יוצא לך מספר לא שלם, אז איך אתה יכול לפתור אותו מעל Z7?
אתה יכול לפרק 37=a*7+b כאשר a מקסימלי. במקרה כזה, ב-z7, שלושים ושבע יהיה שקול ל-b.
לא ממש הבנתי.. נגיד 4X = 25 מעל Z11, למה יהיה שווה X?
לכל מספר בשדה יש הופכי, אתה כופל בהופכי בשני הצדדים. בדוגמא שהבאת, ההופכי של 4 הוא 3 (שכן 12=1 מודולו 11). לכן איקס שווה ל75=9 מודולו 11. --ארז שיינר

שאלה לגבי דירוג משוואות ב12

חובה לדרג את המשוואות או שאפשר פשוט להביא את המקרים של a בשדה?

לדרג, זה מה שלומדים בתרגיל הזה --ארז שיינר

תרגיל2- שאלה 2 סעיפים ב' ו-ג'

ב':אני חושב שאמור להיות שהעמודה ה-J שווה לעמודה ה-I של A כי ה-1 הוא האיבר ה-I בעמודה J ואותו הדבר לגבי סעיף ג':שורה i שווה לשורהJ של A


תשובה: אתה צודק, יתוקן בקרוב.--איתמר שטיין 21:09, 22 ביולי 2012 (IDT)

עלתה גרסא מתוקנת. --איתמר שטיין 21:29, 22 ביולי 2012 (IDT)

שאלה 7

מה הכוונה במטריצות סגורות לכפל? לא זכור לי שעברנו על זה בתרגיל/הרצאה.


תשובה: להגיד שקבוצה [math]\displaystyle{ X }[/math] של מטריצות סגורה לכפל זה אומר ש:

אם [math]\displaystyle{ A,B\in X }[/math] אז [math]\displaystyle{ AB\in X }[/math]

(מכפלה של מטריצות מהקבוצה נמצאת בקבוצה).--איתמר שטיין 22:54, 22 ביולי 2012 (IDT)

כלומר השאלה היא בעצם אם אכפול שתי מטריצות סקלריות, האם אקבל מטריצה סקלרית? האם צריך להוכיח/להפריך את התשובה, כי השאלה שואלת רק אילו סגורות ואילו לא.

כמובן שיש להוכיח/להפריך --שירה ג

שאלה 2 חלק שני

בשאלה 2 אני צריך להניח שמיספר השורות ב A שווה למיספר העמודות ב E? או שזה ברור?


תשובה: כן. [math]\displaystyle{ A,E_{i,j}\in \mathbb{F}^{n\times n} }[/math] .--איתמר שטיין 22:34, 24 ביולי 2012 (IDT)

שאלה 3 בשעורי בית 2

בשאלה 3 סעיף ג', שואלים עברו אילו ערכי a , b המטריצה הפיכה, ומה ההפיכה עבור ערכים אלו.

עכשיו אני הצחלתי להגיע לאילו ערכי a ,b אין הפיכה.. אז מה להגיד שעבור כל ערך שהוא לא מה שמצאתי יש הפיכה??

כי ביקשו עבור ערכי a,b ספציפיים..


תשובה: אין בעיה להגיד שעבור כל [math]\displaystyle{ a,b }[/math] פרט למקרים מסוימים המטריצה הפיכה.

אבל בשביל המקרים שהיא הפיכה צריך למצוא את ההופכית.--איתמר שטיין 22:43, 24 ביולי 2012 (IDT)

שאלה 6 ש"ב 2

בסעיפים א' ו ב' של התרגיל היה צריך להוכיח האם משהו עם הקבוצה שווה להופכי שלה. עכשיו בסעיף האחרון שאלו האם A בהכרח הופכית, וגיליתי שלא בהכרח...

אז זה אומר שסעיפים א' ו ב' לא נכונים?


תשובה: אם ל[math]\displaystyle{ A }[/math] אין בהכרח הופכי אז באמת א' וב' הם מיידית לא נכונים.--איתמר שטיין 22:46, 24 ביולי 2012 (IDT)

שאלה 4 סעיף ג

האים מטריצה ריבועית עם 4 איברים שכולם 1 נחשבת למטריצת האפס?

תשובה: מטריצת האפס היא המטריצה שכל הערכים בה הם [math]\displaystyle{ 0 }[/math].--איתמר שטיין 22:48, 24 ביולי 2012 (IDT)

הגדרות לשאלה 7

היות וכמה אנשים שאלו אותי היום. אני כותב כאן את ההגדרות הרלוונטיות לשאלה 7.

מטריצה [math]\displaystyle{ A }[/math] נקראת

1)משולשית עליונה אם [math]\displaystyle{ A_{i,j}=0 }[/math] עבור [math]\displaystyle{ j\lt i }[/math].

2)משולשית תחתונה אם [math]\displaystyle{ A_{i,j}=0 }[/math] עבור [math]\displaystyle{ i\lt j }[/math].

3) משולשית אם היא משולשית עליונה או תחתונה.

4) אלכסונית אם [math]\displaystyle{ A_{i,j}=0 }[/math] עבור [math]\displaystyle{ i\neq j }[/math].

5) סקלרית אם [math]\displaystyle{ A=c\cdot I }[/math] כאשר [math]\displaystyle{ c\in \mathbb{F} }[/math].--איתמר שטיין 22:55, 24 ביולי 2012 (IDT)

תרגיל 2 שאלה 5

מה זה אומר אחד חלקי טראס איי? 1/tr(A)?


תשובה: אם [math]\displaystyle{ A\in \mathbb{F}^{n\times n} }[/math] אז [math]\displaystyle{ tr(A)\in \mathbb{F} }[/math].

לכן, אם [math]\displaystyle{ tr(A)\neq 0 }[/math] קיים לו הופכי. ההופכי הוא [math]\displaystyle{ \frac{1}{tr(A)} }[/math].--איתמר שטיין 17:27, 25 ביולי 2012 (IDT)

שאלה 6

האם העובדה שנתון A^2=-I פירוש הדבר שקיימת אחת כזאת (מגודל nXn)?


תשובה: כן.--איתמר שטיין 21:24, 25 ביולי 2012 (IDT)


מה בדיוק הכוונה בסעיף ג'? איך אני יכול להוכיח שA כזאת היא בהכרח הפיכה?


תשובה: אם תצליח למצוא הופכי זה אומר שהיא בהכרח הפיכה.--איתמר שטיין 21:24, 25 ביולי 2012 (IDT)

שאלה 3 בתרגיל 2

בסעיף ג', אני יודע שהמטריצה לא הפיכה ל a=0 וגם b=0 , אבל אני לא יודע אם זה המקרה היחיד. אפשר כיוון ?


רמז: במקום לנסות לחפש מתי המטריצה לא הפיכה, תנסה למצוא את ההופכית שלה.--איתמר שטיין 21:33, 25 ביולי 2012 (IDT)

תודה

שאלה 4 תרגיל 2

בסעיף א' האם הככונה למצוא 3 מטריצות ספיציפיות המקיימות את הדרישות או למצוא מטריצה A המקיימת את הדרישות לכל B ו C


תשובה: למצוא שלוש מטריצות ספציפיות.--איתמר שטיין 21:26, 25 ביולי 2012 (IDT)

שאלה 7 מטריצות הפיכות

מותר בכפל מטריצות להפוך AxB)x(BxA) ל Ax(BxB)xA?


תשובה: כן.

[math]\displaystyle{ (A\cdot(B\cdot B))\cdot A = A\cdot((B\cdot B)\cdot A) = (A\cdot B)\cdot(B \cdot A) }[/math].

זה נובע מחוק הקיבוץ (אסוציאטיביות) של כפל מטריצות.--איתמר שטיין 21:30, 25 ביולי 2012 (IDT)

תרגיל 2 שאלה 2 סעיף ד׳

באגף ימין, איך אפשר לכפול איבר במטריצה?


תשובה: [math]\displaystyle{ a_{j,k}\in \mathbb{F} }[/math]. זה כפל של סקלר במטריצה.--איתמר שטיין 21:35, 25 ביולי 2012 (IDT)

שאלה 5

עפ"י חוק בפילוג בשדה F , אז (סיגמה של אברי מטריצה משדה F כפול סקלר s מ F) שווה (לסיגמה של s כפול אותם אברים ) ?


תשובה: כן. אם [math]\displaystyle{ s,a_0,\ldots,a_n\in \mathbb{F} }[/math] אז

[math]\displaystyle{ s \displaystyle\sum\limits_{i=0}^n a_i = \displaystyle\sum\limits_{i=0}^n (sa_i) }[/math]

אפשר להוכיח את זה באמצעות פילוג ואינדוקציה.--איתמר שטיין 23:07, 26 ביולי 2012 (IDT)

אבל אני לא צריך להוכיח נכון ?


תשובה: לא צריך.--איתמר שטיין 10:38, 27 ביולי 2012 (IDT)

שאלה 5 א

לא הבנתי איך להוכיח את זה כי זה ברור

תרגיל 2 - חיבור מטריצות -מופיע במספר שאלות

איך אני מחבר מטריצות? נגיד נתון לי A ו B מעל שדה F 3*3 אז החיבור שלהם A+B - למה הוא שווה? ואיך מבצעים את זה?

לדוגמא זה מופיע בשאלה 5 ב' ושאלה 4 סעף ג'


תשובה: אם [math]\displaystyle{ A,B\in \mathbb{F}^{m\times n} }[/math] אז

[math]\displaystyle{ [A+B]_{i,j}=A_{i,j}+B_{i,j} }[/math].

זה פשוט חיבור איבר איבר. --איתמר שטיין 21:56, 28 ביולי 2012 (IDT)

שאלה 7

כשאני מוכיח שיש סגירות במטריצות סקלריות אני יכול להשתמש בלי להוכיח את חוק החילוף לכפל של סקלרים(aA=Aa כאשר a סקלר בשדה F וA מטריצה במרחב [math]\displaystyle{ F^{n*n} }[/math]? --Avital 22:58, 27 ביולי 2012 (IDT)


תשובה: אפשר להסתמך על החוק הזה בלי להוכיח אותו.--איתמר שטיין 22:00, 28 ביולי 2012 (IDT)

תרגיל 2 שאלה 4 סעיף ג'

כתוב שצריך לתת דוגמא למטריצות A ו- B הפיכות כך ש- A+B!=0 (לא שווה )

מה הכוונה בהפיכות ?- שהן אחת הופכית של השנייה ? או שני מטריצות הופכיות שלא קשורות אחת לשנייה ?

ומה הכוונה ב- A+B ? איך מחברים מטריצות ?


תשובה: כל אחת מהן הפיכה ואין להן בהכרח קשר אחת עם השניה.

לגבי חיבור מטריצות: אם [math]\displaystyle{ A,B\in \mathbb{F}^{m\times n} }[/math] אז

[math]\displaystyle{ [A+B]_{i,j}=A_{i,j}+B_{i,j} }[/math].

זה פשוט חיבור איבר איבר.--איתמר שטיין 22:07, 28 ביולי 2012 (IDT)

תרגיל 2 שאלה 7

מה הכוונה -אילו מקבוצות המטריצות הריבועיות סגורות לכפל?

מה הכוונה סגורות לכפל ?


תשובה: להגיד שקבוצה [math]\displaystyle{ X }[/math] של מטריצות סגורה לכפל זה אומר ש:

אם [math]\displaystyle{ A,B\in X }[/math] אז [math]\displaystyle{ AB\in X }[/math]

(מכפלה של מטריצות מהקבוצה נמצאת בקבוצה).--איתמר שטיין 22:54, 22 ביולי 2012 (IDT)

שאלה 1 תרגיל 3

האם אפשר להשתמש בקריטריון המקוצר שראינו בהרצאה? (כלומר עם שלושת התנאים: W ת"מ אם"ם W לא ריקה וגם W סגורה לכפל בסקלר וחיבור).


תשובה: כן.--איתמר שטיין 22:03, 29 ביולי 2012 (IDT)

שאלה 6 א' בתרגיל 2

בשאלה זו ניתן להגיד כי A כפול A במינוס 1 =I, כלומר A הפיכה, מכיוון שמזכירים את A במינוס אחד ? אם לא מה אומר A במינוס אחד ?


תשובה: אתה לא יכול להניח ש [math]\displaystyle{ A }[/math] הפיכה רק בגלל שכתוב בסעיף א' (וב') [math]\displaystyle{ A^{-1} }[/math].

אתה כן יכול לומר שאם [math]\displaystyle{ A }[/math] לא בהכרח הפיכה אז ברור ש א' וב' לא נכונים כי עבור [math]\displaystyle{ A }[/math] לא הפיכה, [math]\displaystyle{ A^{-1} }[/math] לא קיים בכלל. --איתמר שטיין 23:06, 30 ביולי 2012 (IDT)

דחוףף

יש לי הארכת זמן ולא קיבלתי מייל לאן אני צריך ללכת כדי להראות שיש לי הארכת זמן ,מישהו יכול להגיד לי לאן ללכת ועם מה? למי להתקשר?

שדה אינסופי

האם אפשר להניח בלי הוכחה שchar(F)=0 => השדה F אינסופי?


תשובה: כן. (למרות שאני מקווה שאתם יודעים איך להוכיח את זה). --איתמר שטיין 23:09, 30 ביולי 2012 (IDT)


נתבונן בקבוצה 1,1+1,1+1+1,1+1+1+1....

(1 הוא 1 של השדה)

בגלל סגירות לחיבור, כל האיברים נמצאים בשדה. המאפיין הוא אפס, לכן לא משנה כמה פעמים נחבר נקבל איברים שונים. מכאן כבר שיש אינסוף איברים בשדה F, והוא אינסופי.

תרגיל 3 -טעות בשאלה 4 ג'

בשאלה 4 ג'. צריך להניח בנוסף ש [math]\displaystyle{ A \neq \emptyset }[/math].

גרסא מתוקנת תעלה בהמשך היום.--איתמר שטיין 10:07, 31 ביולי 2012 (IDT)

תרגיל 3 שאלה 2

שלום, בתרגיל 3 שאלה 2 מה סדר הפעולות באגפים הימניים? משמאל לימין או שהחיבור בסוף? תודה מראש :)


תשובה: החיבור בסוף.--איתמר שטיין 20:42, 1 באוגוסט 2012 (IDT)

בוחן 7.8

מה מבנה הבוחן בשלישי? כמה שאלות וכמה נקודות לשאלה???

תרגיל 3 שאלה 2

כל הסעיפים מכילים את אותם ביטוים משני הצדדים. צריך להוכיח עבור שני סעיפים ולהפריך עבור השנים האחרים ?


תשובה: אני לא רוצה להגיד כמה סעיפים נכונים וכמה לא.

זה נכון שבגלל שכל הסעיפים קשורים, זה יכול להקל עליכם קצת.

למשל, אם הצלחת להוכיח את א' זה מייד אומר שב' לא נכון.--איתמר שטיין 22:29, 1 באוגוסט 2012 (IDT)

כיתות לימוד מחר

שלום, באילו כיתות אנו לומדים מחר?


תשובה: שימו לב לשינוי הכתות באופן חד פעמי ליום חמישי 2/8/12


ההרצאות במקום הרגיל ב 604 61/62



התרגיל של אפי יתקיים בכיתה 403/2 בשעה 13

שירה 404/102

ארז 404/114

איתמר 404/115 --איתמר שטיין 22:24, 1 באוגוסט 2012 (IDT)

שאלה 3

עוד לא הבנתי מה ההבדל בין (sp(A+B לבין (B או sp(A ובין spA + spB לבין spA איחוד spB מישהו יכול להסביר לי עם דוגמה??


תשובה:

[math]\displaystyle{ A \cup B }[/math] זאת קבוצה שמכילה את כל איברי [math]\displaystyle{ A }[/math] ו [math]\displaystyle{ B }[/math] (האיחוד שלהם). [math]\displaystyle{ A+B }[/math] זאת קבוצה של כל האיברים שהם חיבור של משהו מ [math]\displaystyle{ A }[/math] ומשהו מ [math]\displaystyle{ B }[/math].

דוגמא:

אם [math]\displaystyle{ A = \{(1,2), (3,4)\} }[/math] ו [math]\displaystyle{ B= \{(5,6)\} }[/math]

אז

[math]\displaystyle{ A \cup B = \{(1,2) , (3,4) , (5,6)\} }[/math]

אבל

[math]\displaystyle{ A+B = \{(6,8), (8,10)\} }[/math].--איתמר שטיין 10:35, 3 באוגוסט 2012 (IDT)


רגע ומה ההבדל בין spA + spB לבין spA איחוד spB??

תרגיל 3 שאלה 3 סעיף ב

האם SPAN של (1,0)איחוד (0,1) יוצר את המישור (Rבריבוע) או שווה לצירים בילבד


תשובה: [math]\displaystyle{ span(\{(1,0),(0,1)\}) }[/math] יוצר את המישור.

כל וקטור במישור [math]\displaystyle{ (a,b) }[/math] הוא צירוף לינארי [math]\displaystyle{ (a,b) = a(1,0) + b(0,1) }[/math] ולכן

[math]\displaystyle{ (a,b) \in span(\{(1,0),(0,1)\}) }[/math].--איתמר שטיין 10:47, 3 באוגוסט 2012 (IDT)

אמרתי לך!!!! אייי ! חח אל תשכח את הדוריטוס ;)

שאלה

אם למטריצה יש שורת אפסים זה אומר שאין לה בסיס??


תשובה: אתה צריך להסביר את השאלה יותר טוב.

בסיס יש למרחב וקטורי (לכל מרחב וקטורי).

מטריצה (אחת) היא לא מרחב וקטורי (אלא אם כן היא מטריצת האפס).

מה המרחב הוקטורי שאתה מדבר עליו?--איתמר שטיין 10:38, 3 באוגוסט 2012 (IDT)


בשאלה 7 ב למע' המשוואות מתקבלת שורת אפסים (אחרי שהפכתי אותה למטריצה) אז השאלה היא האם יש לה בסיס


תשובה: למרחב הפתרונות של כל מערכת משוואות הומוגנית יש בסיס. (כמו לכל מרחב וקטורי).

לכן, גם לפתרונות של המערכת בשאלה יש בסיס. --איתמר שטיין 13:45, 3 באוגוסט 2012 (IDT)

תרגיל 3 שאלה 2

האם בשביל להוכיח ששני תתי מרחבים הם שונים מספיק לתת דוגמה שהם שונים או שצריך להוכיח שלא משנה מה תציב הם יהיו שונים


תשובה: הטיעון [math]\displaystyle{ U \cap (V+W) = U \cap V + U \cap W }[/math] נכון אם לכל הצבה שהיא של מרחבים [math]\displaystyle{ U,V,W }[/math] יהיה שוויון.


הטיעון [math]\displaystyle{ U \cap (V+W) \neq U \cap V + U \cap W }[/math] נכון אם לכל הצבה שהיא של מרחבים [math]\displaystyle{ U,V,W }[/math] לא יהיה שוויון.


אני מקווה שזה עונה על השאלה.--איתמר שטיין 10:43, 3 באוגוסט 2012 (IDT)

זה עונה על השאלה תודה

שאלה כללית

האם הספאן של (1,0) פלוס (של מ"ו) הספאן של (0,1) שווה לספאן של (1,0) (0,1)? האם זה אומר שחיבור הספאנים הנ"ל פורש את R^2?

הוא כבר ענה על זה, תראה 3 שאלות למעלה

שאלה 1

אפשר להשתמש בקריטריון המקוצר?


כן.--איתמר שטיין 16:12, 3 באוגוסט 2012 (IDT)

אז מה הקטע של התרגיל? פשוט אומרים לפי הקריטריון המקוצר...?


תשובה: אולי אנחנו מדברים על דברים שונים.

כשאני אומר שאפשר להשתמש בקריטריון המקוצר אני מתכוון שאפשר להשתשמש במשפט שראיתם בהרצאה שאומר:

[math]\displaystyle{ W }[/math] תת מרחב וקטורי אם ורק אם מתקיימים שלושת התנאים הבאים.

1) [math]\displaystyle{ W \neq \emptyset }[/math].

2) [math]\displaystyle{ u,v \in W \Rightarrow u+v \in W }[/math].

3)[math]\displaystyle{ u \in W, \quad \alpha \in \mathbb{F} \Rightarrow \alpha u \in W }[/math].

בהינתן המשפט הזה, צריך לעשות עוד קצת עבודה כדי להוכיח את מה שכתוב בתרגיל. --איתמר שטיין 17:36, 3 באוגוסט 2012 (IDT)

תרגיל 3 שאלה 6

אם אני רוצה להפריך טענות, אני צריך להביא בתור דוגמא U ו V מסויימים ו B1 ו B2 מסויימים ולהראות שזה לא מתקיים?


כן.--איתמר שטיין 16:13, 3 באוגוסט 2012 (IDT)

חומר לבוחן

עד איפה החומר לבוחן ביום שלישי? עד איזה חומר ללמוד? ועד איזה שיעור זה ? תודה!


תשובה: עד החומר שלמדתם ביום חמישי 26/7 (כולל) שזה אומר:

שדות, מערכות משוואות לינאריות, מטריצות, כפל מטריצות והפיכות מטריצות.

מרחבים וקטוריים, כולל בסיס ומימד כולל משפט השלישי חינם (נדמה לי שלא כולל משפט המימדים).--איתמר שטיין 17:40, 3 באוגוסט 2012 (IDT)

שאלה כללית

אם לדוגמא אני במ"ו מעל שדה Z5 לדוגמא, אז האם גם המספרים בוקטורים הם מתוך השדה? לדוגמא בשדה הנ״ל יכול להיות לי הוקטור (7,3,9)?