משתמש:איתמר שטיין

מתוך Math-Wiki


שאלה 1

סעיף א

עבור נקודות [math]\displaystyle{ (x,y,z)\neq (0,0,0) }[/math] פשוט גוזרים את הפונקציה לפי [math]\displaystyle{ x }[/math]

[math]\displaystyle{ f_x(x,y,z)=\frac{zy\cos(xy){(x^2+y^2+z^2)}^\frac{1}{3}-\frac{1}{3}{(x^2+y^2+z^2)}^{-\frac{2}{3}}\cdot (2x)\cdot{(z\sin(xy))}}{{(x^2+y^2+z^2)}^\frac{2}{3}} }[/math]


עבור הנקודה [math]\displaystyle{ (x,y,z)=(0,0,0) }[/math] קל לראות ש

[math]\displaystyle{ \lim_{t\rightarrow 0}\frac{f(t,0,0)-f(0,0,0)}{t}=\lim_{t\rightarrow 0}\frac{0-0}{t}=0 }[/math]


סעיף ב

כמו שראינו בקלות ש [math]\displaystyle{ f_x(0,0,0)=0 }[/math] קל לראות שגם [math]\displaystyle{ f_y(0,0,0)=0 }[/math] ו [math]\displaystyle{ f_z(0,0,0)=0 }[/math].

ראשית נוודא ש [math]\displaystyle{ f }[/math] רציפה (לא חייבים, אבל בדר"כ שווה לבדוק. כי אם היא לא רציפה אז ברור שהיא לא דיפרנציאבילית).

נשים לב ש

[math]\displaystyle{ |\frac{z\sin(xy)}{{(x^2+y^2+z^2)}^{\frac{1}{3}}}|\leq |\frac{z}{{(x^2+y^2+z^2)}^{\frac{1}{3}}}|\leq |\frac{z}{{(z^2)}^{\frac{1}{3}}}|=|z^{\frac{1}{3}}|\rightarrow 0 }[/math]

ולכן [math]\displaystyle{ f }[/math] רציפה.

נבדוק דיפרנציאביליות

צריך לבדוק אם [math]\displaystyle{ \epsilon (h_1,h_2,h_3) }[/math] המוגדרת לפי:

[math]\displaystyle{ f(h_1,h_2,h_3)-f(0,0,0)=f_x(0,0,0)h_1+f_y(0,0,0)h_2+f_z(0,0,0)h_3+\epsilon(h_1,h_2,h_3)\sqrt{h_1^2+h_2^2+h_3^2} }[/math]

מתכנסת ל [math]\displaystyle{ 0 }[/math] בנקודה [math]\displaystyle{ (0,0,0) }[/math].

במקרה שלנו צריך:

[math]\displaystyle{ \lim_{(h_1,h_2,h_3)\rightarrow (0,0,0)} }[/math]