תקציר פיזיקה למתמטיקאים, סמסטר ב תשע״ג

מתוך Math-Wiki
הגרסה להדפסה אינה נתמכת עוד וייתכן שיש בה שגיאות תיצוג. נא לעדכן את הסימניות בדפדפן שלך ולהשתמש בפעולת ההדפסה הרגילה של הדפדפן במקום זה.

להבא, אלא אם צוין אחרת, נסמן:

  • [math]\displaystyle{ \vec r, \vec v, \vec a }[/math] פונקציות המיקום, המהירות והתאוצה כפונקציה של הזמן [math]\displaystyle{ t }[/math] בהתאמה.
  • לכל פונקציה [math]\displaystyle{ f }[/math] של הזמן נסמן [math]\displaystyle{ f_0=f(0) }[/math] ערך הפונקציה בזמן ההתחלה.
  • לכל וקטור [math]\displaystyle{ \vec u }[/math] נסמן כ־[math]\displaystyle{ u=\left|\vec u\right| }[/math] את גודלו וכ־[math]\displaystyle{ \hat u=\sgn\!\left(\vec u\right) }[/math] את כיוונו.

הקדמה

יחידות

  • זמן – שנייה: [math]\displaystyle{ \mathrm s }[/math]
  • מרחק – מטר: [math]\displaystyle{ \mathrm m }[/math]
  • מסה – קילוגרם: [math]\displaystyle{ \mathrm{kg} }[/math]
  • כוח – ניוטון: [math]\displaystyle{ \mathrm{N=\frac{kg\cdot m}{s^2}} }[/math]
  • אנרגיה – ג׳אול: [math]\displaystyle{ \mathrm{J=\frac{kg\cdot m^2}{s^2}=N\cdot m} }[/math]
  • תדירות – הרץ: [math]\displaystyle{ \mathrm{Hz=s^{-1}} }[/math]

קבועים

  • גודל תאוצת הכובד בקרבת כדה״א: [math]\displaystyle{ g\approx9.8\mathrm\frac ms }[/math]

תזכורות ונוסחאות

  • מכפלה וקטורית: [math]\displaystyle{ \vec u\times\vec v:=\begin{pmatrix}u_yv_z-u_zv_y\\u_zv_x-u_xv_z\\u_xv_y-u_yv_x\end{pmatrix}\simeq\begin{vmatrix}\hat\mathbf x&\hat\mathbf y&\hat\mathbf z\\u_x&u_y&u_z\\v_x&v_y&v_z\end{vmatrix} }[/math]
  • גרדיאנט: [math]\displaystyle{ \nabla f:=\frac{\partial f}{\partial x}\hat\mathbf x+\frac{\partial f}{\partial y}\hat\mathbf y+\frac{\partial f}{\partial z}\hat\mathbf z }[/math]
  • דיברגנץ: [math]\displaystyle{ \nabla\cdot F:=\frac{\mathrm dF_x}{\mathrm dx}+\frac{\mathrm dF_y}{\mathrm dy}+\frac{\mathrm dF_z}{\mathrm dz} }[/math]
  • רוטור/קרל: [math]\displaystyle{ \nabla\times F=\left(\frac{\partial F_z}{\partial y}-\frac{\partial F_y}{\partial z}\right)\hat\mathbf x+\left(\frac{\partial F_x}{\partial z}-\frac{\partial F_z}{\partial x}\right)\hat\mathbf y+\left(\frac{\partial F_y}{\partial x}-\frac{\partial F_x}{\partial y}\right)\hat\mathbf z }[/math]
  • לפלסיאן: [math]\displaystyle{ \nabla^2f:=\nabla\cdot\nabla f=\frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}+\frac{\partial^2 f}{\partial z^2} }[/math]

קואורדינטות

עבור [math]\displaystyle{ x,y,z\in(-\infty,\infty)\ \and\ r,\rho\in[0,\infty)\ \and\ \theta\in(-\pi,\pi]\ \and\ \varphi\in\left[-\frac\pi2,\frac\pi2\right] }[/math] קואורדינטות כפונקציות של הזמן מתקיים:

מ־↓ ל־← קרטזיות גליליות כדוריות
קרטזיות [math]\displaystyle{ \begin{array}{l} \rho=\sqrt{x^2+y^2}\\\theta=\mbox{atan2}(y,x)\\z=z\end{array} }[/math] [math]\displaystyle{ \begin{array}{l} r=\sqrt{x^2+y^2+z^2}\\\theta=\mbox{atan2}(y,x)\\\varphi=\arccos(z/r)\end{array} }[/math]
גליליות [math]\displaystyle{ \begin{array}{l} x=\rho\cos(\theta)\\y=\rho\sin(\theta)\\z=z\end{array} }[/math] [math]\displaystyle{ \begin{array}{l} r=\sqrt{\rho^2+z^2}\\\theta=\theta\\\varphi=\arctan(\rho/z)\end{array} }[/math]
כדוריות [math]\displaystyle{ \begin{array}{l} x=r\sin(\varphi)\cos(\theta)\\y=r\sin(\varphi)\sin(\theta)\\z=r\cos(\varphi)\end{array} }[/math] [math]\displaystyle{ \begin{array}{l} \rho=r\sin(\varphi)\\\theta=\theta\\z=r\cos(\varphi)\end{array} }[/math]

כאשר [math]\displaystyle{ \mbox{Im}(\arctan)=\left[-\frac\pi2,\frac\pi2\right] }[/math] ו־[math]\displaystyle{ \mbox{atan2}(y,x):=\begin{cases}\arctan(y/x)&x\gt 0\\\arctan(y/x)+\sgn(y)\pi&x\lt 0\\\sgn(y)\frac\pi2&x=0\ \and y\ne0\\\text{undefined}&x=y=0\end{cases} }[/math].

כמו כן, [math]\displaystyle{ \mathrm dx\mathrm dy\mathrm dz=\rho\mathrm d\rho\mathrm d\theta\mathrm dz=r^2\sin(\varphi)\mathrm dr\mathrm d\varphi\mathrm d\theta }[/math].

קינמטיקה

  • [math]\displaystyle{ \vec v=\dot\vec r\ \and\ \vec a=\dot\vec v\ \and\ \omega=\dot\theta }[/math].
  • תנועה במהירות קבועה: [math]\displaystyle{ \vec v(t)\equiv\vec v_0 }[/math]. אזי [math]\displaystyle{ \vec r=\vec v_0t+\vec r_0 }[/math].
  • תנועה בתאוצה קבועה: [math]\displaystyle{ \vec a(t)\equiv\vec a_0 }[/math]. אזי [math]\displaystyle{ \vec v=\vec a_0t+\vec v_0 }[/math] ו־[math]\displaystyle{ \vec r=\frac\vec a2 t^2+\vec v_0t+\vec r_0 }[/math].
  • תנועה בגודל מהירות קבוע: [math]\displaystyle{ |\vec v|\equiv\text{const.} }[/math]. זה קורה אם״ם [math]\displaystyle{ \vec a\perp\vec v }[/math].
  • תנועה כללית במעגל: אם תנועת הגוף במעגל המונח על המישור [math]\displaystyle{ xy }[/math] שרדיוסו [math]\displaystyle{ R }[/math] אזי [math]\displaystyle{ \vec r=R\begin{pmatrix}\cos(\theta)\\\sin(\theta)\\0\end{pmatrix} }[/math], [math]\displaystyle{ \vec v=\omega R\begin{pmatrix}-\sin(\theta)\\\cos(\theta)\\0\end{pmatrix} }[/math], ו־[math]\displaystyle{ \vec a=\vec a_R+\vec a_T }[/math] כאשר [math]\displaystyle{ \vec a_R=-\omega^2 R\begin{pmatrix}\cos(\theta)\\\sin(\theta)\\0\end{pmatrix}=-\omega^2\vec r }[/math] נקראת התאוצה הרדיאלית והיא אחראית לשינוי בכיוון המהירות ו־[math]\displaystyle{ \vec a_T=\dot\omega R\begin{pmatrix}-\sin(\theta)\\\cos(\theta)\\0\end{pmatrix}=\frac\dot\omega\omega\vec v }[/math] נקראת התאוצה הטנגנטית/משיקית והיא אחראית לשינוי בגודל המהירות. אם נסמן [math]\displaystyle{ \vec\omega:=\omega\hat\mathbf z }[/math] נקבל [math]\displaystyle{ \vec v=\vec\omega\times\vec r }[/math] ו־[math]\displaystyle{ \vec a_R=\vec\omega\times\vec v\ \and\ \vec a_T=\dot\vec\omega\times\vec r }[/math].
  • תנועה קצובה במעגל: תנועת גוף במעגל כנ״ל כך ש־[math]\displaystyle{ \omega(t)\equiv\text{const.} }[/math]. לכן [math]\displaystyle{ \theta=\omega t+\theta_0 }[/math] ו־[math]\displaystyle{ \vec a_T=\vec0\ \and\ a_R=\frac{v^2}R }[/math]. התאוצה נקראת צנטריפטלית.
  • התדירות מוגדרת כ־[math]\displaystyle{ f:=\frac\omega{2\pi} }[/math].
  • זמן המחזור מוגדר כ־[math]\displaystyle{ T:=f^{-1}=\frac{2\pi}\omega }[/math].