תקציר פיזיקה למתמטיקאים, סמסטר ב תשע״ג
להבא, אלא אם צוין אחרת, נסמן:
- [math]\displaystyle{ \vec r, \vec v, \vec a }[/math] פונקציות המיקום, המהירות והתאוצה כפונקציה של הזמן [math]\displaystyle{ t }[/math] בהתאמה.
- לכל פונקציה [math]\displaystyle{ f }[/math] של הזמן נסמן [math]\displaystyle{ f_0=f(0) }[/math] ערך הפונקציה בזמן ההתחלה.
- לכל וקטור [math]\displaystyle{ \vec u }[/math] נסמן כ־[math]\displaystyle{ u=\left|\vec u\right| }[/math] את גודלו וכ־[math]\displaystyle{ \hat u=\sgn\!\left(\vec u\right) }[/math] את כיוונו.
הקדמה
יחידות
- זמן – שנייה: [math]\displaystyle{ \mathrm s }[/math]
- מרחק – מטר: [math]\displaystyle{ \mathrm m }[/math]
- מסה – קילוגרם: [math]\displaystyle{ \mathrm{kg} }[/math]
- כוח – ניוטון: [math]\displaystyle{ \mathrm{N=\frac{kg\cdot m}{s^2}} }[/math]
- אנרגיה – ג׳אול: [math]\displaystyle{ \mathrm{J=\frac{kg\cdot m^2}{s^2}=N\cdot m} }[/math]
- תדירות – הרץ: [math]\displaystyle{ \mathrm{Hz=s^{-1}} }[/math]
קבועים
- גודל תאוצת הכובד בקרבת כדה״א: [math]\displaystyle{ g\approx9.8\mathrm\frac ms }[/math]
תזכורות ונוסחאות
- מכפלה וקטורית: [math]\displaystyle{ \vec u\times\vec v:=\begin{pmatrix}u_yv_z-u_zv_y\\u_zv_x-u_xv_z\\u_xv_y-u_yv_x\end{pmatrix}\simeq\begin{vmatrix}\hat\mathbf x&\hat\mathbf y&\hat\mathbf z\\u_x&u_y&u_z\\v_x&v_y&v_z\end{vmatrix} }[/math]
- גרדיאנט: [math]\displaystyle{ \nabla f:=\frac{\partial f}{\partial x}\hat\mathbf x+\frac{\partial f}{\partial y}\hat\mathbf y+\frac{\partial f}{\partial z}\hat\mathbf z }[/math]
- דיברגנץ: [math]\displaystyle{ \nabla\cdot F:=\frac{\mathrm dF_x}{\mathrm dx}+\frac{\mathrm dF_y}{\mathrm dy}+\frac{\mathrm dF_z}{\mathrm dz} }[/math]
- רוטור/קרל: [math]\displaystyle{ \nabla\times F=\left(\frac{\partial F_z}{\partial y}-\frac{\partial F_y}{\partial z}\right)\hat\mathbf x+\left(\frac{\partial F_x}{\partial z}-\frac{\partial F_z}{\partial x}\right)\hat\mathbf y+\left(\frac{\partial F_y}{\partial x}-\frac{\partial F_x}{\partial y}\right)\hat\mathbf z }[/math]
- לפלסיאן: [math]\displaystyle{ \nabla^2f:=\nabla\cdot\nabla f=\frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}+\frac{\partial^2 f}{\partial z^2} }[/math]
קואורדינטות
עבור [math]\displaystyle{ x,y,z\in(-\infty,\infty)\ \and\ r,\rho\in[0,\infty)\ \and\ \theta\in(-\pi,\pi]\ \and\ \varphi\in\left[-\frac\pi2,\frac\pi2\right] }[/math] קואורדינטות כפונקציות של הזמן מתקיים:
מ־↓ ל־← | קרטזיות | גליליות | כדוריות |
---|---|---|---|
קרטזיות | [math]\displaystyle{ \begin{array}{l} \rho=\sqrt{x^2+y^2}\\\theta=\mbox{atan2}(y,x)\\z=z\end{array} }[/math] | [math]\displaystyle{ \begin{array}{l} r=\sqrt{x^2+y^2+z^2}\\\theta=\mbox{atan2}(y,x)\\\varphi=\arccos(z/r)\end{array} }[/math] | |
גליליות | [math]\displaystyle{ \begin{array}{l} x=\rho\cos(\theta)\\y=\rho\sin(\theta)\\z=z\end{array} }[/math] | [math]\displaystyle{ \begin{array}{l} r=\sqrt{\rho^2+z^2}\\\theta=\theta\\\varphi=\arctan(\rho/z)\end{array} }[/math] | |
כדוריות | [math]\displaystyle{ \begin{array}{l} x=r\sin(\varphi)\cos(\theta)\\y=r\sin(\varphi)\sin(\theta)\\z=r\cos(\varphi)\end{array} }[/math] | [math]\displaystyle{ \begin{array}{l} \rho=r\sin(\varphi)\\\theta=\theta\\z=r\cos(\varphi)\end{array} }[/math] |
כאשר [math]\displaystyle{ \mbox{Im}(\arctan)=\left[-\frac\pi2,\frac\pi2\right] }[/math] ו־[math]\displaystyle{ \mbox{atan2}(y,x):=\begin{cases}\arctan(y/x)&x\gt 0\\\arctan(y/x)+\sgn(y)\pi&x\lt 0\\\sgn(y)\frac\pi2&x=0\ \and y\ne0\\\text{undefined}&x=y=0\end{cases} }[/math].
כמו כן, [math]\displaystyle{ \mathrm dx\mathrm dy\mathrm dz=\rho\mathrm d\rho\mathrm d\theta\mathrm dz=r^2\sin(\varphi)\mathrm dr\mathrm d\varphi\mathrm d\theta }[/math].
קינמטיקה
- [math]\displaystyle{ \vec v=\dot\vec r\ \and\ \vec a=\dot\vec v\ \and\ \omega=\dot\theta }[/math].
- תנועה במהירות קבועה: [math]\displaystyle{ \vec v(t)\equiv\vec v_0 }[/math]. אזי [math]\displaystyle{ \vec r=\vec v_0t+\vec r_0 }[/math].
- תנועה בתאוצה קבועה: [math]\displaystyle{ \vec a(t)\equiv\vec a_0 }[/math]. אזי [math]\displaystyle{ \vec v=\vec a_0t+\vec v_0 }[/math] ו־[math]\displaystyle{ \vec r=\frac\vec a2 t^2+\vec v_0t+\vec r_0 }[/math].
- תנועה בגודל מהירות קבוע: [math]\displaystyle{ |\vec v|\equiv\text{const.} }[/math]. זה קורה אם״ם [math]\displaystyle{ \vec a\perp\vec v }[/math].
- תנועה כללית במעגל: אם תנועת הגוף במעגל המונח על המישור [math]\displaystyle{ xy }[/math] שרדיוסו [math]\displaystyle{ R }[/math] אזי [math]\displaystyle{ \vec r=R\begin{pmatrix}\cos(\theta)\\\sin(\theta)\\0\end{pmatrix} }[/math], [math]\displaystyle{ \vec v=\omega R\begin{pmatrix}-\sin(\theta)\\\cos(\theta)\\0\end{pmatrix} }[/math], ו־[math]\displaystyle{ \vec a=\vec a_R+\vec a_T }[/math] כאשר [math]\displaystyle{ \vec a_R=-\omega^2 R\begin{pmatrix}\cos(\theta)\\\sin(\theta)\\0\end{pmatrix}=-\omega^2\vec r }[/math] נקראת התאוצה הרדיאלית והיא אחראית לשינוי בכיוון המהירות ו־[math]\displaystyle{ \vec a_T=\dot\omega R\begin{pmatrix}-\sin(\theta)\\\cos(\theta)\\0\end{pmatrix}=\frac\dot\omega\omega\vec v }[/math] נקראת התאוצה הטנגנטית/משיקית והיא אחראית לשינוי בגודל המהירות. אם נסמן [math]\displaystyle{ \vec\omega:=\omega\hat\mathbf z }[/math] נקבל [math]\displaystyle{ \vec v=\vec\omega\times\vec r }[/math] ו־[math]\displaystyle{ \vec a_R=\vec\omega\times\vec v\ \and\ \vec a_T=\dot\vec\omega\times\vec r }[/math].
- תנועה קצובה במעגל: תנועת גוף במעגל כנ״ל כך ש־[math]\displaystyle{ \omega(t)\equiv\text{const.} }[/math]. לכן [math]\displaystyle{ \theta=\omega t+\theta_0 }[/math] ו־[math]\displaystyle{ \vec a_T=\vec0\ \and\ a_R=\frac{v^2}R }[/math]. התאוצה נקראת צנטריפטלית.
- התדירות מוגדרת כ־[math]\displaystyle{ f:=\frac\omega{2\pi} }[/math].
- זמן המחזור מוגדר כ־[math]\displaystyle{ T:=f^{-1}=\frac{2\pi}\omega }[/math].