תקציר פיזיקה למתמטיקאים, סמסטר ב תשע״ג

מתוך Math-Wiki

להבא, אלא אם צוין אחרת, נסמן:

  • [math]\displaystyle{ \vec r, \vec v, \vec a, m }[/math] הן המיקום, המהירות, התאוצה והמסה כפונקציה של הזמן [math]\displaystyle{ t }[/math] בהתאמה.
  • לכל פונקציה [math]\displaystyle{ f }[/math] של הזמן נסמן [math]\displaystyle{ f_0=f(0) }[/math] ערך הפונקציה בזמן ההתחלה.
  • לכל וקטור [math]\displaystyle{ \vec u }[/math] נסמן כ־[math]\displaystyle{ u=|\vec u| }[/math] את גודלו וכ־[math]\displaystyle{ \hat u=\sgn(\vec u) }[/math] את כיוונו.

הקדמה

יחידות

  • זמן – שנייה: [math]\displaystyle{ \mathrm s }[/math]
  • מרחק – מטר: [math]\displaystyle{ \mathrm m }[/math]
  • מסה – קילוגרם: [math]\displaystyle{ \mathrm{kg} }[/math]
  • כוח – ניוטון: [math]\displaystyle{ \mathrm{N=\frac{kg\cdot m}{s^2}} }[/math]
  • אנרגיה – ג׳אול: [math]\displaystyle{ \mathrm{J=\frac{kg\cdot m^2}{s^2}=N\cdot m} }[/math]
  • תדירות – הרץ: [math]\displaystyle{ \mathrm{Hz=s^{-1}} }[/math]

קבועים

  • גודל תאוצת הכובד בקרבת כדה״א: [math]\displaystyle{ g\approx9.8\mathrm\frac ms }[/math]

תזכורות ונוסחאות

  • מכפלה וקטורית: [math]\displaystyle{ \vec u\times\vec v:=\begin{pmatrix}u_yv_z-u_zv_y\\u_zv_x-u_xv_z\\u_xv_y-u_yv_x\end{pmatrix}\simeq\begin{vmatrix}\hat\mathbf x&\hat\mathbf y&\hat\mathbf z\\u_x&u_y&u_z\\v_x&v_y&v_z\end{vmatrix} }[/math]
  • גרדיאנט: [math]\displaystyle{ \nabla f:=\frac{\partial f}{\partial x}\hat\mathbf x+\frac{\partial f}{\partial y}\hat\mathbf y+\frac{\partial f}{\partial z}\hat\mathbf z }[/math]
  • דיברגנץ: [math]\displaystyle{ \nabla\cdot F:=\frac{\mathrm dF_x}{\mathrm dx}+\frac{\mathrm dF_y}{\mathrm dy}+\frac{\mathrm dF_z}{\mathrm dz} }[/math]
  • רוטור/קרל: [math]\displaystyle{ \nabla\times F=\left(\frac{\partial F_z}{\partial y}-\frac{\partial F_y}{\partial z}\right)\hat\mathbf x+\left(\frac{\partial F_x}{\partial z}-\frac{\partial F_z}{\partial x}\right)\hat\mathbf y+\left(\frac{\partial F_y}{\partial x}-\frac{\partial F_x}{\partial y}\right)\hat\mathbf z }[/math]
  • לפלסיאן: [math]\displaystyle{ \nabla^2f:=\nabla\cdot\nabla f=\frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}+\frac{\partial^2 f}{\partial z^2} }[/math]

קואורדינטות

עבור [math]\displaystyle{ x,y,z\in(-\infty,\infty)\ \and\ r,\rho\in[0,\infty)\ \and\ \theta\in(-\pi,\pi]\ \and\ \varphi\in\left[-\frac\pi2,\frac\pi2\right] }[/math] קואורדינטות כפונקציות של הזמן מתקיים:

מ־↓ ל־← קרטזיות גליליות כדוריות
קרטזיות [math]\displaystyle{ \begin{array}{l} \rho=\sqrt{x^2+y^2}\\\theta=\mbox{atan2}(y,x)\\z=z\end{array} }[/math] [math]\displaystyle{ \begin{array}{l} r=\sqrt{x^2+y^2+z^2}\\\theta=\mbox{atan2}(y,x)\\\varphi=\arccos(z/r)\end{array} }[/math]
גליליות [math]\displaystyle{ \begin{array}{l} x=\rho\cos(\theta)\\y=\rho\sin(\theta)\\z=z\end{array} }[/math] [math]\displaystyle{ \begin{array}{l} r=\sqrt{\rho^2+z^2}\\\theta=\theta\\\varphi=\arctan(\rho/z)\end{array} }[/math]
כדוריות [math]\displaystyle{ \begin{array}{l} x=r\sin(\varphi)\cos(\theta)\\y=r\sin(\varphi)\sin(\theta)\\z=r\cos(\varphi)\end{array} }[/math] [math]\displaystyle{ \begin{array}{l} \rho=r\sin(\varphi)\\\theta=\theta\\z=r\cos(\varphi)\end{array} }[/math]

כאשר [math]\displaystyle{ \mbox{Im}(\arctan)=\left[-\frac\pi2,\frac\pi2\right] }[/math] ו־[math]\displaystyle{ \mbox{atan2}(y,x):=\begin{cases}\arctan(y/x)&x\gt 0\\\arctan(y/x)+\sgn(y)\pi&x\lt 0\\\sgn(y)\frac\pi2&x=0\ \and y\ne0\\\text{undefined}&x=y=0\end{cases} }[/math].

כמו כן, [math]\displaystyle{ \mathrm dx\mathrm dy\mathrm dz=\rho\mathrm d\rho\mathrm d\theta\mathrm dz=r^2\sin(\varphi)\mathrm dr\mathrm d\varphi\mathrm d\theta }[/math].

קינמטיקה

  • [math]\displaystyle{ \vec v=\dot\vec r\ \and\ \vec a=\dot\vec v }[/math].
  • התדירות הזוויתית: [math]\displaystyle{ \omega:=\dot\theta }[/math].
  • התנע: [math]\displaystyle{ \vec p=m\vec v }[/math].
  • תנועה במהירות קבועה: [math]\displaystyle{ \vec v(t)\equiv\vec v_0 }[/math]. אזי [math]\displaystyle{ \vec r=\vec v_0t+\vec r_0 }[/math].
  • תנועה בתאוצה קבועה: [math]\displaystyle{ \vec a(t)\equiv\vec a_0 }[/math]. אזי [math]\displaystyle{ \vec v=\vec a_0t+\vec v_0 }[/math] ו־[math]\displaystyle{ \vec r=\frac\vec a2 t^2+\vec v_0t+\vec r_0 }[/math].
  • תנועה בגודל מהירות קבוע: [math]\displaystyle{ |\vec v|\equiv\text{const.} }[/math]. זה קורה אם״ם [math]\displaystyle{ \vec a\perp\vec v }[/math].
  • תנועה כללית במעגל: אם תנועת הגוף במעגל המונח על המישור [math]\displaystyle{ xy }[/math] שרדיוסו [math]\displaystyle{ R }[/math] אזי [math]\displaystyle{ \vec r=R\begin{pmatrix}\cos(\theta)\\\sin(\theta)\\0\end{pmatrix} }[/math], [math]\displaystyle{ \vec v=\omega R\begin{pmatrix}-\sin(\theta)\\\cos(\theta)\\0\end{pmatrix} }[/math], ו־[math]\displaystyle{ \vec a=\vec a_R+\vec a_T }[/math] כאשר [math]\displaystyle{ \vec a_R=-\omega^2 R\begin{pmatrix}\cos(\theta)\\\sin(\theta)\\0\end{pmatrix}=-\omega^2\vec r }[/math] נקראת התאוצה הרדיאלית והיא אחראית לשינוי בכיוון המהירות ו־[math]\displaystyle{ \vec a_T=\dot\omega R\begin{pmatrix}-\sin(\theta)\\\cos(\theta)\\0\end{pmatrix}=\frac\dot\omega\omega\vec v }[/math] נקראת התאוצה הטנגנטית/משיקית והיא אחראית לשינוי בגודל המהירות. אם נסמן [math]\displaystyle{ \vec\omega:=\omega\hat\mathbf z }[/math] נקבל [math]\displaystyle{ \vec v=\vec\omega\times\vec r }[/math] ו־[math]\displaystyle{ \vec a_R=\vec\omega\times\vec v\ \and\ \vec a_T=\dot\vec\omega\times\vec r }[/math].
  • תנועה קצובה במעגל: תנועת גוף במעגל כנ״ל כך ש־[math]\displaystyle{ \omega(t)\equiv\text{const.} }[/math]. לכן [math]\displaystyle{ \theta=\omega t+\theta_0 }[/math] ו־[math]\displaystyle{ \vec a_T=\vec0\ \and\ a_R=\frac{v^2}R }[/math]. התאוצה נקראת צנטריפטלית.
  • התדירות מוגדרת כ־[math]\displaystyle{ f:=\frac\omega{2\pi} }[/math].
  • זמן המחזור מוגדר כ־[math]\displaystyle{ T:=f^{-1}=\frac{2\pi}\omega }[/math].

מכניקה

חוקי התנועה של ניוטון

  1. גוף שלא פועלים עליו כוחות ינוע במהירות וכיוון קבועים: [math]\displaystyle{ \vec v\equiv\text{const.} }[/math].
  2. גוף שמסתו [math]\displaystyle{ m }[/math] ופועל עליו כוח [math]\displaystyle{ \vec F=\dot\vec p }[/math].
  3. אם גוף 1 מפעיל כוח [math]\displaystyle{ \vec F_{21} }[/math] על גוף 2 אז גוף 2 יפעיל כוח [math]\displaystyle{ \vec F_{12}=-\vec F_{21} }[/math] על גוף 1.

כוחות נפוצים

  • כוח אלסטי: נתון קפיץ שקצה אחד שלו מקובע וקצהו השני נמצא בנקודה [math]\displaystyle{ \vec r_\text{loose} }[/math] במצב רפוי ובנקודה [math]\displaystyle{ \vec r }[/math] בזמן הנוכחי. אזי מופעל על קצהו השני כוח [math]\displaystyle{ \vec F=-k\Delta x\sgn(\vec r-\vec r_\text{loose}) }[/math] כאשר [math]\displaystyle{ k\gt 0 }[/math] הוא קבוע האלסטיות של הקפיץ ו־[math]\displaystyle{ \Delta x }[/math] השינוי באורך הקפיץ לעומת המצב הרפוי.
  • מתנד (אוסצילטור) הרמוני: מערכת מכנית שבה פועל על גוף נתון כוח פרופורציוני להעתק הגוף ובכיוון מנוגד לו. המערכת הנ״ל היא דוגמה למערכת כזו.
  • דוגמה: אם נניח שלקצה ההשני מחובר גוף החופשי לנוע בציר ה־[math]\displaystyle{ x }[/math] וש־[math]\displaystyle{ x_0=0 }[/math] היא הנקודה בה הקפיץ רפוי אזי משוואת הכוחות בציר ה־[math]\displaystyle{ x }[/math] על הגוף תהא [math]\displaystyle{ F_x=-kx=m\ddot x }[/math] ולכן [math]\displaystyle{ x(t)=A\sin(\omega t+\phi) }[/math] כש־[math]\displaystyle{ m }[/math] מסת הגוף, [math]\displaystyle{ \omega=\sqrt\frac km }[/math], [math]\displaystyle{ A }[/math] היא משרעת התנודה. את המשרעת ואת [math]\displaystyle{ \phi }[/math] ניתן למצוא עפ״י תנאי התחלה.
  • כוח מתיחות: בהנתן חוט מתוח שקצה אחד שלו מקובע מופעל על הקצה השני כוח [math]\displaystyle{ \vec T=-T\hat\mathbf n }[/math] כאשר [math]\displaystyle{ \hat\mathbf n }[/math] וקטור יחידה בכיוון החוט (כלומר, ככיוון הווקטור המתחיל בקצה הראשון ונגמר בקצה השני), ו־[math]\displaystyle{ T }[/math] גודל הניתן לחישוב. בד״כ מניחים שאורך החוט קבוע.
  • כוח נורמלי: משטח מפעיל כוח [math]\displaystyle{ \vec N }[/math] על גוף המונח עליו שכיוונו ניצב לפני המשטח בנקודת המגע בין הגוף למשטח.
  • כוח הכובד: בקרבת כדה״א מופעל כוח הגרביטציה [math]\displaystyle{ -mg\hat\mathbf z }[/math] כאשר [math]\displaystyle{ m }[/math] מסת הגוף ו־[math]\displaystyle{ \hat\mathbf z }[/math] וקטור יחידה בכיוון מעלה.

חוקי השימור

תהא מערכת ובה הגופים [math]\displaystyle{ 1,2,\dots,n }[/math]. נסמן את הכוח השקול של הכוחות החיצוניים למערכת הפועלים על גוף [math]\displaystyle{ i }[/math] כ־[math]\displaystyle{ \vec F_{ie} }[/math]. מסת הגוף [math]\displaystyle{ i }[/math] מסומנת [math]\displaystyle{ m_i }[/math], מיקומו [math]\displaystyle{ \vec r_i }[/math] והתנע שלו – [math]\displaystyle{ \vec p_i }[/math].

  • המסה הכוללת של המערכת מוגדרת כ־[math]\displaystyle{ M:=\sum_{i=1}^n m_i }[/math].
  • מרכז המסה של המערכת מוגדר כ־[math]\displaystyle{ \vec R:=\frac{\sum_{i=1}^n m_i\vec r_i}M }[/math].
  • התנע הכולל של המערכת מוגדר כ־[math]\displaystyle{ \vec p:=\sum_{i=1}^n\vec p_i }[/math]. אם המסות קבועות אז הוא שווה ל־[math]\displaystyle{ M\dot\vec R }[/math].
  • לפי החוק השלישי של ניוטון [math]\displaystyle{ \dot\vec p=\sum_{i=1}^n\dot\vec p_i=\sum_{i=1}^n\vec F_{ie} }[/math].
  • חוק שימור התנע: אם שקול הכוחות החיצוניים הוא [math]\displaystyle{ \vec 0 }[/math] אז [math]\displaystyle{ \dot\vec p=0 }[/math], כלומר התנע הכולל קבוע.
  • אם התנע קבוע אז מרכז המסה ינוע במהירות קבועה (בגודל ובכיוון).