אנליזת פורייה ויישומים קיץ תשעב/סיכומים/תקציר

מתוך Math-Wiki
הגרסה להדפסה אינה נתמכת עוד וייתכן שיש בה שגיאות תיצוג. נא לעדכן את הסימניות בדפדפן שלך ולהשתמש בפעולת ההדפסה הרגילה של הדפדפן במקום זה.

להבא, אלא אם צוין אחרת, נסמן:

  • [math]\displaystyle{ f,g,h }[/math] פונקציות.
  • בהנתן [math]\displaystyle{ a,b }[/math] נסמן [math]\displaystyle{ q=\frac2{b-a} }[/math] ו־[math]\displaystyle{ q_n=\pi nq }[/math].
  • [math]\displaystyle{ a_n,b_n }[/math] הם מקדמי פורייה של [math]\displaystyle{ \cos(q_nx),\sin(q_nx) }[/math] (בהתאמה) בטור פורייה של [math]\displaystyle{ f }[/math], ו־[math]\displaystyle{ c_n }[/math] מקדמי פורייה של [math]\displaystyle{ \mathrm e^{\mathrm iq_nx} }[/math] בטור פורייה המרוכב.
  • [math]\displaystyle{ n!! }[/math] היא העצרת הכפולה של [math]\displaystyle{ n }[/math], והיא שווה למכפלת כל המספרים האי־זוגיים (אם [math]\displaystyle{ n }[/math] אי־זוגי) מ־1 עד [math]\displaystyle{ n }[/math], או כל המספרים הזוגיים (אחרת). כלומר: [math]\displaystyle{ (2n-1)!!=\prod_{k=1}^n (2k-1) }[/math] ו־[math]\displaystyle{ (2n)!!=\prod_{k=1}^n 2k=2^n n! }[/math].
  • [math]\displaystyle{ \{\mathbf e_1,\dots,\mathbf e_n\} }[/math] אורתונורמלית ו־[math]\displaystyle{ \{\mathbf b_1,\dots,\mathbf b_n\} }[/math] אורתוגונלית.

תזכורות ותוספות לאלגברה לינארית

  • אי־שוויון הולדר: אם [math]\displaystyle{ x\in\ell_p\ \and\ y\in\ell_q }[/math] כאשר [math]\displaystyle{ \frac1p+\frac1q=1 }[/math] (כלומר, [math]\displaystyle{ \ell_p,\ell_q }[/math] צמודים) אזי [math]\displaystyle{ \sum_{n=1}^\infty|x_n\cdot y_n|\le\|x\|_p\cdot\|y\|_q }[/math].
  • אם [math]\displaystyle{ \mathbf u=\sum_{k=1}^n a_k\mathbf e_k }[/math] אזי [math]\displaystyle{ \forall k:\ a_k=\langle\mathbf u,\mathbf e_k\rangle }[/math].
  • ההיטל של [math]\displaystyle{ \mathbf u }[/math] על [math]\displaystyle{ \mathbf v }[/math] הוא [math]\displaystyle{ \mbox{proj}_{\mathbf v}(\mathbf u)=\frac{\langle\mathbf u,\mathbf v\rangle}{\langle\mathbf v,\mathbf v\rangle}\mathbf v }[/math].
  • אם [math]\displaystyle{ S=\{\mathbf b_1,\dots,\mathbf b_n\} }[/math] בסיס אורתוגונלי אזי הקירוב הטוב ביותר ל־[math]\displaystyle{ \mathbf u }[/math] ב־[math]\displaystyle{ W=\mbox{span}(S) }[/math] הוא [math]\displaystyle{ \tilde\mathbf u=\sum_{k=1}^n\mbox{proj}_{\mathbf b_k}(\mathbf u) }[/math], כלומר [math]\displaystyle{ \min_{\mathbf v\in W}\|\mathbf u-\mathbf v\|=\|\mathbf u-\tilde\mathbf u\| }[/math].
  • אי־שוויון בסל: [math]\displaystyle{ \|\mathbf u\|^2\ge\sum_{k=1}^n|\langle\mathbf u,\mathbf e_k\rangle|^2 }[/math].
  • תהליך גרם–שמידט: בהנתן בסיס [math]\displaystyle{ \{\mathbf u_1,\dots,\mathbf u_n\} }[/math] נוכל להגדיר בסיס אורתוגונלי [math]\displaystyle{ \{\mathbf b_1,\dots,\mathbf b_n\} }[/math] ובסיס אורתונורמלי [math]\displaystyle{ \{\mathbf e_1,\dots,\mathbf e_n\} }[/math] באופן הבא:
    [math]\displaystyle{ \begin{array}{ll}\mathbf b_1:=\mathbf u_1,&\displaystyle\mathbf e_1:=\frac{\mathbf b_1}{\|\mathbf b_1\|}\\\mathbf b_2:=\mathbf u_2-\mbox{proj}_{\mathbf b_1}(\mathbf u_2),&\mathbf e_2:=\displaystyle\frac{\mathbf b_2}{\|\mathbf b_2\|}\\\vdots&\vdots\\\displaystyle\mathbf b_k:=\mathbf u_k-\sum_{i=1}^{k-1}\mbox{proj}_{\mathbf b_i}(\mathbf u_k),&\displaystyle\mathbf e_k:=\frac{\mathbf b_k}{\|\mathbf b_k\|}\\\vdots&\vdots\end{array} }[/math]
  • מרחב הפולינומים ממעלה [math]\displaystyle{ n }[/math] או פחות מסומן [math]\displaystyle{ P_n[x] }[/math].
  • פולינומי לז׳נדר: בהנתן המכפלה הפנימית [math]\displaystyle{ \langle f,g\rangle=\int\limits_{-1}^1 f(x)g(x)\mathrm dx }[/math] על מרחב הפולינומים [math]\displaystyle{ P_n[x] }[/math], הפולינומים האורתוגונליים הנוצרים בתהליך גרם–שמידט מהבסיס [math]\displaystyle{ \{1,x,x^2,\dots,x^n\} }[/math] הם
    [math]\displaystyle{ \begin{array}{l}P_0(x)=1\\P_1(x)=x\\\displaystyle P_2(x)=\frac{3x^2-1}2\\\displaystyle P_3(x)=\frac{5x^3-3x}2\\\vdots\end{array} }[/math]
    ניתן לחשב אותם גם ע״י [math]\displaystyle{ P_n(x)=\frac1{2^n\cdot n!}\frac{\mathrm d^n}{\mathrm dx^n}\left(x^2-1\right)^n }[/math] או [math]\displaystyle{ P_{n+1}(x)=\frac{(2n+1)x\cdot P_n(x)-n\cdot P_{n-1}(x)}{n+1} }[/math], והם מקיימים [math]\displaystyle{ \|P_n\|^2=\frac2{2n+1} }[/math].
  • פולינומי צבישב: בהנתן המכפלה הפנימית [math]\displaystyle{ \langle f,g\rangle=\int\limits_{-1}^1\frac{f(x)g(x)}\sqrt{1-x^2}\mathrm dx }[/math] על מרחב הפולינומים [math]\displaystyle{ P_n[x] }[/math], הפולינומים האורתוגונליים הנוצרים בתהליך גרם–שמידט מהבסיס [math]\displaystyle{ \{1,x,x^2,\dots,x^n\} }[/math] הם
    [math]\displaystyle{ \begin{array}{l}T_0(x)=1\\T_1(x)=x\\T_2(x)=2x^2-1\\T_3(x)=4x^3-3x\\\vdots\end{array} }[/math]
    ניתן לחשב אותם גם ע״י [math]\displaystyle{ T_n(x)=\frac{\sqrt{1-x^2}}{(-1)^n(2n-1)!!}\frac{\mathrm d^n}{\mathrm dx^n}\left(1-x^2\right)^{n-\frac12} }[/math] (נוסחת רודריגז) או [math]\displaystyle{ T_{n+1}(x)=2x\cdot T_n(x)-T_{n-1}(x) }[/math], והם מקיימים [math]\displaystyle{ \|T_n\|^2=\begin{cases}\pi,&n=0\\\frac\pi2,&\text{else}\end{cases} }[/math].

טורי פורייה

  • פונקציה רציפה למקוטעין היא פונקציה רציפה למעט במספר סופי של נקודות אי־רציפות שאינן מסוג שני. הפונקציות הרציפות למקוטעין בקטע [math]\displaystyle{ [a,b] }[/math] יוצרות מרחב מכפלה פנימית [math]\displaystyle{ E[a,b] }[/math] עם [math]\displaystyle{ \langle f,g\rangle=q\int\limits_a^b f(x)\overline{g(x)}\mathrm dx }[/math]. מכפלה פנימית שימושית נוספת היא [math]\displaystyle{ \tfrac12\langle\cdot,\cdot\rangle }[/math].
  • [math]\displaystyle{ E }[/math] הוא סימון מקוצר ל־[math]\displaystyle{ E[-\pi,\pi] }[/math].
  • מערכת סגורה: נתונה קבוצה אורתונורמלית אינסופית [math]\displaystyle{ \{\mathbf e_1,\mathbf e_2,\dots\} }[/math] במרחב מכפלה פנימית. המערכת תקרא סגורה אם היא מקיימת לכל וקטור [math]\displaystyle{ \mathbf u }[/math] את התנאי [math]\displaystyle{ \lim_{n\to\infty}\left\|\mathbf u-\sum_{k=1}^n\langle\mathbf u,\mathbf e_k\rangle\mathbf e_k\right\|=0 }[/math].
  • המערכות [math]\displaystyle{ \left\{\frac1\sqrt2\right\}\cup\{\cos(q_nx)\}_{n=1}^\infty\cup\{\sin(q_nx)\}_{n=1}^\infty }[/math] ו־[math]\displaystyle{ \left\{\mathrm e^{\mathrm iq_nx}\right\}_{n\to-\infty}^\infty }[/math] אורתונורמליות סגורות ב־[math]\displaystyle{ E[a,b] }[/math] לפי המכפלות הפנימיות [math]\displaystyle{ \langle\cdot,\cdot\rangle }[/math] ו־[math]\displaystyle{ \tfrac12\langle\cdot,\cdot\rangle }[/math] בהתאמה.
  • טור פורייה של [math]\displaystyle{ f }[/math] ב־[math]\displaystyle{ [a,b] }[/math] הוא [math]\displaystyle{ \frac{a_0}2+\sum_{n=1}^\infty\Big(a_n\cos(q_nx)+b_n\sin(q_nx)\Big) }[/math] כאשר [math]\displaystyle{ \forall n\in\mathbb N\cup\{0\}:\ a_n:=\langle f,\cos(q_nx)\rangle\ \and\ \forall n\in\mathbb N:\ b_n:=\langle f,\sin(q_nx)\rangle }[/math].
  • אם [math]\displaystyle{ f }[/math] זוגית זה טור קוסינוסים, ואם היא אי־זוגית זה טור סינוסים.
  • מתקיים [math]\displaystyle{ \frac{|a_0|^2}2+\sum_{n=1}^\infty\left(|a_n|^2+|b_n|^2\right)\le\|f\|^2 }[/math].
  • טור פורייה המרוכב של [math]\displaystyle{ f }[/math] ב־[math]\displaystyle{ [a,b] }[/math] הוא [math]\displaystyle{ \sum_{n\to-\infty}^\infty c_n\mathrm e^{\mathrm iq_nx} }[/math] כאשר [math]\displaystyle{ \forall n\in\mathbb Z:\ c_n:=\tfrac12\left\langle f,\mathrm e^{\mathrm iq_nx}\right\rangle }[/math].
  • מתקיים [math]\displaystyle{ \forall n\in\mathbb Z:\ c_n=\frac{a_{|n|}-\mathrm i\cdot\sgn(n)b_{|n|}}2 }[/math] וכן [math]\displaystyle{ a_n=c_n+c_{-n}\ \and\ b_n=\mathrm i(c_n-c_{-n}) }[/math].
  • אם [math]\displaystyle{ f\in E[a,b] }[/math] ו־[math]\displaystyle{ S_N }[/math] הסכום החלקי ה־[math]\displaystyle{ N }[/math]־י של טור פורייה (מרוכב או ממשי) של [math]\displaystyle{ f }[/math], אזי [math]\displaystyle{ \lim_{N\to\infty}\|f-S_N\|=0 }[/math].
  • [math]\displaystyle{ E'[a,b] }[/math] הוא מרחב כל הפוקנציות ב־[math]\displaystyle{ E[a,b] }[/math] שקיימות להן הנגזרות החד־צדדיות בכל נקודה ב־[math]\displaystyle{ [a,b] }[/math] למעט, אולי, בקצות הקטע.
  • משפט ההתכנסות (משפט דיריכלה): תהי [math]\displaystyle{ f\in E'(\mathbb R) }[/math] אינטגרבילית בהחלט ב־[math]\displaystyle{ [a,b] }[/math] ובעלת מחזור [math]\displaystyle{ b-a }[/math]. בכל נקודה בה הפונקציה רציפה טור פורייה ב־[math]\displaystyle{ [a,b] }[/math] מתכנס ל־[math]\displaystyle{ f }[/math].
  • אם [math]\displaystyle{ f\in E'[c,d] }[/math] אזי ניתן ליצור המשכה מחזורית שלה ב־[math]\displaystyle{ \mathbb R }[/math].
  • אם [math]\displaystyle{ x_0 }[/math] נקודת אי־רציפות אזי הטור מתכנס ל־[math]\displaystyle{ \displaystyle\lim_{x\to x_0^+}f(x)+\lim_{x\to x_0^-}f(x)\over2 }[/math].
  • תופעת גיבס: נניח שבנוסף [math]\displaystyle{ f'\in E[a,b] }[/math] ו־[math]\displaystyle{ x_0 }[/math] נקודת אי־רציפות מסוג ראשון של [math]\displaystyle{ f }[/math] כך ש־[math]\displaystyle{ a\lt x_0\lt b }[/math]. כמו כן, [math]\displaystyle{ S_N }[/math] הסכום החלקי ה־[math]\displaystyle{ N }[/math]־י של טור פורייה של [math]\displaystyle{ f }[/math]. אזי קיימת סדרת נקודות [math]\displaystyle{ \{x_n\}_{n=1}^\infty }[/math] המקיימת [math]\displaystyle{ x_n\to x_0\ \and\ \forall n:\ x_n\gt x_0 }[/math] וכן [math]\displaystyle{ \lim_{N\to\infty}\frac{S_N(x_N)-f(x_N)}{\displaystyle\lim_{x\to x_0^+}f(x)-\lim_{x\to x_0^-}f(x)}\approx0.0895\dots }[/math], וזו השגיאה המקסימלית.
  • למת רימן–לבג: אם [math]\displaystyle{ f }[/math] אינטגרבילית בהחלט אזי [math]\displaystyle{ \lim_{n\to\infty}\int\limits_a^b f(x)\sin(nx)\mathrm dx=\lim_{n\to\infty}\int\limits_a^b f(x)\cos(nx)\mathrm dx=0 }[/math] כאשר [math]\displaystyle{ n\in\mathbb R }[/math] (זה גבול של פונקציה, ולא רק של סדרה).
  • גרעין דיריכלה: [math]\displaystyle{ \frac12+\sum_{k=1}^n \cos(kx)=\frac{\sin\!\left(\left(n+\frac12\right)x\right)}{2\sin\!\left(\frac x2\right)} }[/math]. בנוסף, האינטגרל של הביטוי ב־[math]\displaystyle{ (-\pi,\pi) }[/math] שווה ל־[math]\displaystyle{ \pi }[/math].
  • אם [math]\displaystyle{ f\in E'[a,b] }[/math] רציפה ב־[math]\displaystyle{ [a,b] }[/math] ו־[math]\displaystyle{ f(a)=f(b) }[/math] אז טור פורייה של [math]\displaystyle{ f }[/math] יתכנס אליה במ״ש על הקטע.
  • שוויון פרסבל: אם [math]\displaystyle{ f\in E[a,b] }[/math] אזי [math]\displaystyle{ \|f\|^2=q\int\limits_a^b |f(x)|^2\mathrm dx=\frac{|a_0|^2}2+\sum_{n=1}^\infty\Big(|a_n|^2+|b_n|^2\Big) }[/math] ו־[math]\displaystyle{ \frac{\|f\|^2}2=\frac q2\int\limits_a^b |f(x)|^2\mathrm dx=\sum_{n\to-\infty}^\infty |c_n|^2 }[/math].
  • שוויון פרסבל המוכלל: אם [math]\displaystyle{ f,g\in E[a,b] }[/math] אזי [math]\displaystyle{ \langle f,g\rangle=q\int\limits_a^b f(x)\overline{g(x)}\mathrm dx=\frac{a_0\overline{c_0}}2+\sum_{n=1}^\infty\Big(a_n\overline{c_n}+b_n\overline{d_n}\Big) }[/math] כאשר [math]\displaystyle{ g(x)\sim\frac{c_0}2+\sum_{n=1}^\infty\Big(c_n\cos(q_nx)+d_n\sin(q_nx)\Big) }[/math].
  • אם [math]\displaystyle{ f }[/math] רציפה ב־[math]\displaystyle{ [a,b] }[/math], [math]\displaystyle{ f(a)=f(b) }[/math] ו־[math]\displaystyle{ f'\in E[a,b] }[/math] אזי טור פורייה של [math]\displaystyle{ f }[/math] גזיר איבר־איבר ומתקיים [math]\displaystyle{ f'(x)\sim\sum_{n=1}^\infty\big(q_n b_n\cos(q_nx)-q_n a_n\sin(q_nx)\Big)=\sum_{n\to-\infty}^\infty \mathrm iq_nc_n\mathrm e^{\mathrm iq_nx} }[/math].
  • אם [math]\displaystyle{ f\in E[a,b] }[/math] אזי ניתן לבצע אינטגרציה איבר־איבר על טור פורייה. בנוסף, לכל [math]\displaystyle{ x\in[a,b] }[/math] ולכל [math]\displaystyle{ m\in[a,b) }[/math] מתקיים
    [math]\displaystyle{ \begin{align}\int\limits_m^x f(t)\mathrm dt&=\frac{a_0}2(x-m)+\sum_{n=1}^\infty\left(\frac{a_n}{q_n}(\sin(q_nx)-\sin(q_nm))-\frac{b_n}{q_n}(\cos(q_nx)-\cos(q_nm))\right)\\&=c_0(x-m)+\sum_{n\ne0}\frac{c_n}{\mathrm iq_n}\left(\mathrm e^{\mathrm iq_nx}-\mathrm e^{\mathrm iq_nm}\right)\end{align} }[/math]
    והטורים מתכנסים במ״ש.
  • אם [math]\displaystyle{ F }[/math] קדומה ל־[math]\displaystyle{ f }[/math] ב־[math]\displaystyle{ [a,b] }[/math] אזי [math]\displaystyle{ F(x)=\frac{a_0}2x+\sum_{n=1}^\infty\left(\frac{a_n}{q_n}\sin(q_nx)-\frac{b_n}{q_n}\cos(q_nx)\right)+\frac q2\int\limits_a^b F(x)\mathrm dx }[/math].

התמרות פורייה

  • [math]\displaystyle{ G(\mathbb R) }[/math] הוא המרחב הלינארי של כל הפונקציות המוגדרות מ־[math]\displaystyle{ \mathbb R }[/math] ל־[math]\displaystyle{ \mathbb C }[/math] שהן רציפות למקוטעין ואינטגרביליות בהחלט ב־[math]\displaystyle{ \mathbb R }[/math].
  • התמרת פורייה: [math]\displaystyle{ \hat f=\mathcal F[f]:\mathbb R\to\mathbb C }[/math] נקראת "התמרת פורייה של [math]\displaystyle{ f }[/math]" ומוגדרת ע״י [math]\displaystyle{ \hat f(\omega):=\frac1{2\pi}\int\limits_{-\infty}^\infty f(x)\mathrm e^{-\mathrm i\omega x}\mathrm dx }[/math].
  • אם [math]\displaystyle{ f\in G(\mathbb R) }[/math] אזי [math]\displaystyle{ \hat f }[/math] מוגדרת ורציפה בכל נקודה [math]\displaystyle{ \omega\in\mathbb R }[/math]. בנוסף, [math]\displaystyle{ \lim_{\omega\to\pm\infty}\hat f(\omega)=0 }[/math].
  • לכל [math]\displaystyle{ f,g\in G(\mathbb R) }[/math] ולכל [math]\displaystyle{ a,b\in\mathbb C }[/math] מתקיים:
  • [math]\displaystyle{ \mathcal F[af+bg]=a\mathcal F[f]+b\mathcal F[g] }[/math]
  • אם [math]\displaystyle{ f }[/math] ממשית אזי [math]\displaystyle{ \hat f(-\omega)=\overline{\hat f(\omega)} }[/math].
  • מקרה פרטי: אם [math]\displaystyle{ f }[/math] ממשית וזוגית אזי [math]\displaystyle{ \hat f(\omega)=\hat f(-\omega) }[/math] והיא פונקציה ממשית.
  • מקרה פרטי: אם [math]\displaystyle{ f }[/math] ממשית ואי־זוגית אזי [math]\displaystyle{ \hat f(-\omega)=-\hat f(\omega) }[/math] והיא פונקציה מדומה.
  • אם [math]\displaystyle{ f }[/math] מדומה אזי [math]\displaystyle{ \hat f(-\omega)=-\overline{\hat f(\omega)} }[/math].
  • אם [math]\displaystyle{ a\ne0 }[/math] אזי [math]\displaystyle{ \mathcal F[f(ax+b)](\omega)=\frac1{|a|}\exp\!\left(\frac{\mathrm ib\omega}2\right)\mathcal F[f]\!\left(\frac\omega a\right) }[/math].
  • אם [math]\displaystyle{ a\in\mathbb R }[/math] אזי [math]\displaystyle{ \mathcal F\!\left[\mathrm e^{\mathrm iax}f(x)\right]\!(\omega)=\mathcal F[f](\omega-a) }[/math].
  • אם [math]\displaystyle{ a\in\mathbb R }[/math] אזי [math]\displaystyle{ \mathcal F[\cos(ax)f(x)](\omega)=\frac{\mathcal F[f](\omega-a)-\mathcal F[f](\omega+a)}2 }[/math].
  • אם [math]\displaystyle{ a\in\mathbb R }[/math] אזי [math]\displaystyle{ \mathcal F[\sin(ax)f(x)](\omega)=\frac{\mathcal F[f](\omega-a)-\mathcal F[f](\omega+a)}{2\mathrm i} }[/math].
  • אם [math]\displaystyle{ f,f',\dots,f^{(n)}\in G(\mathbb R) }[/math] ו־[math]\displaystyle{ \lim_{x\to\pm\infty}f(x)=0 }[/math] אזי [math]\displaystyle{ \mathcal F\!\left[f^{(n)}\right]\!(\omega)=(\mathrm i\omega)^n\mathcal F[f](\omega) }[/math].
  • אם [math]\displaystyle{ \int\limits_{-\infty}^\infty\left|x^k f(x)\right|\mathrm dx }[/math] מתכנס לכל [math]\displaystyle{ k\in\{1,\dots,n\} }[/math] אזי [math]\displaystyle{ \hat f }[/math] גזירה ברציפות [math]\displaystyle{ n }[/math] פעמים ומתקיים [math]\displaystyle{ \mathcal F\!\left[x^n f(x)\right]\!(\omega)=\mathrm i^n\frac{\mathrm d^n}{\mathrm d\omega^n}\mathcal F[f](\omega) }[/math].
  • התמרת פורייה ההפוכה: אם [math]\displaystyle{ f\in G(\mathbb R) }[/math] אזי בכל נקודה [math]\displaystyle{ x_0 }[/math] שבה קיימות הנגזרות החד־צדדיות מתקיים [math]\displaystyle{ \frac{\displaystyle\lim_{x\to x_0^+}f(x)+\lim_{x\to x_0^-}f(x)}2=\lim_{R\to\infty}\int\limits_{-R}^R\hat f(\omega)\mathrm e^{\mathrm i\omega x}\mathrm d\omega }[/math].
  • מקרה פרטי: אם [math]\displaystyle{ f'\in E(\mathbb R) }[/math] אזי [math]\displaystyle{ f(x)=\int\limits_{-\infty}^\infty\hat f(\omega)\mathrm e^{\mathrm i\omega x}\mathrm d\omega }[/math].
  • עקרון הדואליות של ההתמרה וההתמרה ההפוכה: תהי [math]\displaystyle{ f }[/math] המקיימת [math]\displaystyle{ f'\in E(\mathbb R) }[/math], ונרצה למצוא את התמרת פורייה של ההתמרה [math]\displaystyle{ \hat f }[/math] שלה. נוכל להציב [math]\displaystyle{ x:=-\omega,\ \omega:=x }[/math] ב־[math]\displaystyle{ \int\limits_{-\infty}^\infty\hat f(\omega)\mathrm e^{\mathrm i\omega x}\mathrm d\omega=f(x) }[/math], לחלק את שני האגפים ב־[math]\displaystyle{ 2\pi }[/math] ולקבל [math]\displaystyle{ \hat\hat f(\omega)=\frac1{2\pi}\int\limits_{-\infty}^\infty\hat f(x)\mathrm e^{-\mathrm i\omega x}\mathrm dx=\frac{f(-\omega)}{2\pi} }[/math].
  • אם [math]\displaystyle{ f,g\in G(\mathbb R) }[/math] ו־[math]\displaystyle{ \int\limits_{-\infty}^\infty f(x)\overline{g(x)}\mathrm dx }[/math] ו־[math]\displaystyle{ \int\limits_{-\infty}^\infty\hat f(\omega)\overline{\hat g(\omega)}\mathrm d\omega }[/math] מתכנסים אזי [math]\displaystyle{ \int\limits_{-\infty}^\infty f(x)\overline{g(x)}\mathrm dx=2\pi\int\limits_{-\infty}^\infty\hat f(\omega)\overline{\hat g(\omega)}\mathrm d\omega }[/math].
  • מקרה פרטי: נוסחת פלנשרל (Plancherel): אם [math]\displaystyle{ f\in G(\mathbb R) }[/math] ו־[math]\displaystyle{ \int\limits_{-\infty}^\infty |f(x)|^2\mathrm dx }[/math] ו־[math]\displaystyle{ \int\limits_{-\infty}^\infty \left|\hat f(\omega)\right|^2\mathrm d\omega }[/math] מתכנסים אזי [math]\displaystyle{ \int\limits_{-\infty}^\infty |f(x)|^2\mathrm dx=2\pi\int\limits_{-\infty}^\infty\left|\hat f(\omega)\right|^2\mathrm d\omega }[/math].
  • קונבולוציה: יהיו [math]\displaystyle{ f,g:\mathbb R\to\mathbb R }[/math]. אזי [math]\displaystyle{ \forall x\in\mathbb R:\ (f*g)(x)=\int\limits_{-\infty}^\infty f(x-t)g(t)\mathrm dt }[/math].
  • [math]\displaystyle{ f*g=g*f }[/math]
  • [math]\displaystyle{ (f*g)*h=f*(g*h) }[/math]
  • [math]\displaystyle{ f*(g+h)=f*g+f*h }[/math]
  • אם [math]\displaystyle{ f,g }[/math] אינטגרביליות בהחלט אז [math]\displaystyle{ f*g }[/math] מוגדרת עבורן בכל [math]\displaystyle{ \mathbb R }[/math] וגם היא אינטגרבילית בהחלט.
  • משפט הקונבולוציה: [math]\displaystyle{ \forall f,g\in G(\mathbb R):\ \mathcal F[f*g]=2\pi\mathcal F[f]\mathcal F[g] }[/math].
  • שימוש חשוב: נניח שידועות [math]\displaystyle{ f,g,\hat f,\hat g }[/math] ונרצה למצוא [math]\displaystyle{ h }[/math] כך ש־[math]\displaystyle{ \hat h=\hat f\cdot\hat g }[/math]. אזי [math]\displaystyle{ h=\frac1{2\pi}f*g }[/math].

התמרות פורייה שימושיות

  • [math]\displaystyle{ \mathcal F\!\left[\mathrm e^{-|x|}\right]\!(\omega)=\frac1{\pi(1+\omega^2)} }[/math]
  • [math]\displaystyle{ \mathcal F\!\left[\mathrm e^{-x^2}\right]\!(\omega)=\frac{\mathrm e^{-\omega^2/4}}{2\sqrt\pi} }[/math] (הוכחה ע״י חישוב הנגזרת של האינטגרל שמגדיר את ההתמרה ופתרון המד״ר המתקבלת: [math]\displaystyle{ \hat f'(\omega)=-\frac\omega2\hat f(\omega) }[/math]).
  • עבור [math]\displaystyle{ a\ge0 }[/math]: [math]\displaystyle{ \mathcal F[1_{[-a,a]}](\omega)=\frac{\sin(a\omega)}{\pi\omega} }[/math] (כאשר [math]\displaystyle{ 1_A }[/math] היא הפונקציה המציינת של קבוצה [math]\displaystyle{ A }[/math], ומוגדרת ע״י [math]\displaystyle{ 1_A(x)=\begin{cases}1,&x\in A\\0,&\text{else}\end{cases} }[/math]).

התמרות לפלס

  • חסימות מעריכית: נאמר ש־[math]\displaystyle{ f }[/math] חסומה מעריכית אם קיימים [math]\displaystyle{ M\gt 0 }[/math] (חסם מעריכי) ו־[math]\displaystyle{ \alpha }[/math] (סדר מעריכי) שעבורם [math]\displaystyle{ \forall t:\ |f(t)|\le M\mathrm e^{\alpha t} }[/math].
  • [math]\displaystyle{ \Lambda(\mathbb R) }[/math] הוא המרחב הלינארי של פונקציות [math]\displaystyle{ f:\mathbb R\to\mathbb C }[/math] חסומות מעריכית כך ש־[math]\displaystyle{ f\in E[0,\infty) }[/math] והן אינטגרביליות בהחלט ב־[math]\displaystyle{ [0,R] }[/math] לכל [math]\displaystyle{ 0\lt R\lt \infty }[/math].
  • התמרת לפלס: תהי [math]\displaystyle{ f\in E[0,\infty) }[/math] המקבלת ערכים ב־[math]\displaystyle{ \mathbb C }[/math]. אזי [math]\displaystyle{ \mathcal L[f]:\mathbb R\to\mathbb C }[/math] נקראת "התמרת לפלס של [math]\displaystyle{ f }[/math]" ומוגדרת ע״י [math]\displaystyle{ \mathcal L[f](s)=\int\limits_0^\infty f(t)\mathrm e^{-st}\mathrm dt }[/math].
  • אם [math]\displaystyle{ f\in E[0,\infty) }[/math] וחסומה מעריכית אזי [math]\displaystyle{ \lim_{s\to\infty}\mathcal L[f](s)=0 }[/math].
  • אם [math]\displaystyle{ f\in\Lambda(\mathbb R) }[/math] עם סדר מעריכי [math]\displaystyle{ \alpha }[/math] אז קיימת לה התמרת לפלס ב־[math]\displaystyle{ (\alpha,\infty) }[/math].
  • [math]\displaystyle{ \forall a,b\in\mathbb C:\ \mathcal L[af+bg]=a\mathcal L[f]+b\mathcal L[g] }[/math]
  • [math]\displaystyle{ \mathcal L\!\left[t^n f(t)\right]\!(s)=(-1)^n\frac{\mathrm d^n}{\mathrm ds^n}\mathcal L[f](s) }[/math]
  • משפט התמורה של הנגזרת: תהי [math]\displaystyle{ f }[/math] עם חסם מעריכי [math]\displaystyle{ \alpha }[/math] וכך ש־[math]\displaystyle{ f^{(n)}\in\Lambda(\mathbb R) }[/math]. אזי התמרת לפלס של [math]\displaystyle{ f^{(n)} }[/math] מוגדרת ב־[math]\displaystyle{ (\alpha,\infty) }[/math] ומתקיים [math]\displaystyle{ \mathcal L\!\left[f^{(n)}\right]\!(s)=s^n\mathcal L[f](s)-\sum_{k=0}^{n-1} s^{n-1-k}f^{(k)}(0) }[/math].
  • קונבולוציה: יהיו [math]\displaystyle{ f,g\in\Lambda(\mathbb R) }[/math]. אזי [math]\displaystyle{ \forall t\in[0,\infty):\ (f*g)(t)=\int\limits_0^t f(t-x)g(x)\mathrm dx }[/math].
  • משפט הקונבולוציה: [math]\displaystyle{ \forall f,g\in\Lambda(\mathbb R):\ \mathcal L[f*g]=\mathcal L[f]\mathcal L[g] }[/math]. אם בנוסף [math]\displaystyle{ f,g }[/math] עם סדר מעריכי [math]\displaystyle{ \alpha }[/math] אז [math]\displaystyle{ \mathcal L[f*g](s) }[/math] מוגדר לכל [math]\displaystyle{ s\gt \alpha }[/math].
  • תהא [math]\displaystyle{ f\in\Lambda(\mathbb R) }[/math] ונתונה [math]\displaystyle{ F(t)=\int\limits_0^t f(x)\mathrm dx }[/math]. ממשפט הקונבולוציה עם [math]\displaystyle{ g(t)\equiv1 }[/math] נקבל [math]\displaystyle{ \mathcal L[F](s)=\frac{\mathcal L[f](s)}s }[/math].
  • פונקציית הביסייד (Heaviside) היא [math]\displaystyle{ H_c(t)=\begin{cases}0,&0\le t\lt c\\1,&t\ge c\end{cases} }[/math].
  • [math]\displaystyle{ \mathcal L[H_c(t)f(t-c)](s)=\mathrm e^{-cs}\mathcal L[f](s) }[/math]

התמרות לפלס שימושיות

בהתמרות הבאות, [math]\displaystyle{ a }[/math] הוא מספר ממשי כרצוננו.

  • [math]\displaystyle{ \mathcal L\!\left[\mathrm e^{at}\right]\!(s)=\frac1{s-a},\quad s\gt a }[/math]
  • [math]\displaystyle{ \mathcal L\!\left[t\mathrm e^{at}\right]\!(s)=\frac1{(s-a)^2},\quad s\gt a }[/math]
  • [math]\displaystyle{ \mathcal L[\sin(at)](s)=\frac a{s^2+a^2},\quad s\gt 0 }[/math]
  • [math]\displaystyle{ \mathcal L[\cos(at)](s)=\frac s{s^2+a^2},\quad s\gt 0 }[/math]
  • [math]\displaystyle{ \mathcal L[H_a](s)=\frac{\mathrm e^{-as}}s,\quad s\gt 0 }[/math]

דגימה והתמרת פורייה בדידה

  • [math]\displaystyle{ f\in G(\mathbb R) }[/math] נקראת "חסומה בתדר" אם [math]\displaystyle{ \exists L\gt 0:\ \forall |\omega|\gt L:\ \hat f(\omega)=0 }[/math]. ה־[math]\displaystyle{ L }[/math] המינימלי שמקיים זאת נקרא "רוחב הפס" של [math]\displaystyle{ f }[/math].
  • נניח כי [math]\displaystyle{ f }[/math] חסומה בתדר ובעלת רוחב פס [math]\displaystyle{ L }[/math]. אזי [math]\displaystyle{ \forall x\in\mathbb R:\ \sum_{n\to-\infty}^\infty f\!\left(\frac{\pi n}L\right)=\frac{\sin(Lx-\pi n)}{Lx-\pi n} }[/math].
  • התמרת פורייה בדידה (DFT): בהינתן סדרה [math]\displaystyle{ x=\{x_0,x_1,\dots,x_{N-1}\} }[/math] של [math]\displaystyle{ N }[/math] נקודות, נגדיר את התמרת פורייה הבדידה שלה ע״י [math]\displaystyle{ \forall k:\ \mathcal F_N(x)_k=X_k=\frac1\sqrt N\sum_{m=0}^{N-1} x_m w^{mk} }[/math] כאשר [math]\displaystyle{ w:=\mathrm e^{-2\pi\mathrm i/N} }[/math]. זו התמרה של [math]\displaystyle{ N }[/math] נקודות ל־[math]\displaystyle{ N }[/math] נקודות אחרות.
  • ההתמרת פורייה הבדידה ההפוכה (IDFT) נותנת את ערכי הסדרה המקורית [math]\displaystyle{ x }[/math] לפי ערכי התמרת פורייה הבדידה [math]\displaystyle{ X }[/math] שלה: [math]\displaystyle{ \forall k:\ \mathcal F_N^{-1}(X)_k=\frac1\sqrt N\sum_{m=0}^{N-1} X_m w^{-mk} }[/math].
  • [math]\displaystyle{ \mathcal F_N(ax+by)=a\mathcal F_N(x)+b\mathcal F_N(y) }[/math]
  • [math]\displaystyle{ X_k=X_{k+N} }[/math]
  • קונבולוציה: בהנתן שתי סדרות [math]\displaystyle{ x,y }[/math] בעלות מחזור [math]\displaystyle{ N }[/math] הקונבולוציה מוגדרת ע״י [math]\displaystyle{ (x*y)_k:=\frac1\sqrt N\sum_{m=0}^{N-1} x_m y_{k-m} }[/math].
  • משפט הקונבולוציה: [math]\displaystyle{ \mathcal F_N(x*y)=\mathcal F_N(x)\cdot\mathcal F_N(y)=X\cdot Y }[/math] (כאשר הכפל מתבצע איבר־איבר).
  • מטריצת DFT: התמרת פורייה הבדידה הינה לינארית, לכן קל להגדיר אותה באמצעות מטריצה [math]\displaystyle{ W }[/math] שתקיים [math]\displaystyle{ X=Wx }[/math]. המטריצה מוגדרת כ־[math]\displaystyle{ W=\frac1\sqrt N\begin{pmatrix}1&1&1&\cdots&1\\1&w&w^2&\dots&w^{N-1}\\1&w^2&w^{2\cdot2}&\cdots&w^{2(N-1)}\\\vdots&\vdots&\vdots&\ddots&\vdots\\1&w^{N-1}&w^{2(N-1)}&\cdots&w^{(N-1)^2}\end{pmatrix}=\left(\frac{w^{(i-1)\cdot(j-1)}}\sqrt N\right)_{1\le i,j\le N} }[/math], וזו מטריצה יוניטרית (כלומר [math]\displaystyle{ W^{-1}=\overline W^\top }[/math]) וסימטרית.
  • FFT – Fast Fourier Transform: בעוד שחישוב על פי ההגדרה של התמרת פורייה בדידה הוא בעל סיבוכיות זמן ריצה [math]\displaystyle{ O(N^2) }[/math], תהליכי FFT עושים זאת ב־[math]\displaystyle{ O(N\log(N)) }[/math]. יש מספר שיטות כאלו, אנו למדנו רק את תהליך Cooley–Tukey. הפירוט אינו מופיע כאן, אלא בקישור הנ״ל לוויקפדיה.

מד״ח

  • מעבר חום: נתונה המד״ח [math]\displaystyle{ \frac{\partial u}{\partial t}=k\frac{\partial^2 u}{\partial x^2} }[/math] ([math]\displaystyle{ k }[/math] קבוע) עם תנאי ההתחלה [math]\displaystyle{ u(x,0)=f(x) }[/math].
  • שיטת הפרדת משתנים: אם נתונים בנוסף תנאי השפה [math]\displaystyle{ \forall t\ge0:\ u(-L,t)=u(L,t)\ \and\ \frac{\partial u}{\partial x}(-L,t)=\frac{\partial u}{\partial x}(L,t) }[/math], נניח שניתן להציג את הפתרון [math]\displaystyle{ u(x,t) }[/math] כמכפלה [math]\displaystyle{ X(x)\cdot T(t) }[/math]. אזי [math]\displaystyle{ \frac{T'}{k T}=\frac{X''}X=:-\lambda }[/math] כאשר [math]\displaystyle{ \lambda }[/math] מספר חיובי (אם אי־חיובי תנאי השפה לא יתקיימו). מקבלים שתי מד״ר נפרדות: [math]\displaystyle{ \begin{cases}X''+\lambda X=0\\T'+\lambda T=0\end{cases} }[/math]. לגבי המד״ר הראשונה, תנאי השפה דורשים ש־[math]\displaystyle{ \lambda=\frac{\pi^2n^2}{L^2} }[/math] עבור [math]\displaystyle{ n\in\mathbb N\cup\{0\} }[/math] ולכן, עבור [math]\displaystyle{ n }[/math] נתון, [math]\displaystyle{ X_n(x)=a_n\sin\!\left(\frac{\pi n}L x\right)+b_n\cos\!\left(\frac{\pi n}L x\right) }[/math] פתרון לכל [math]\displaystyle{ a_n,b_n }[/math]. לגבי המד״ר השנייה, [math]\displaystyle{ T_n(t)=\exp\!\left(-k\frac{\pi^2n^2}{L^2}t\right) }[/math] הוא פתרון עבור [math]\displaystyle{ n }[/math] נתון. הפתרון הכללי של [math]\displaystyle{ u }[/math] הוא צירוף לינארי של פתרונות הבסיס: [math]\displaystyle{ u(x,t)=\frac{a_0}2+\sum_{n=1}^\infty\exp\!\left(-k\frac{\pi^2n^2}{L^2}t\right)\left(a_n\cos\!\left(\frac{\pi n}L x\right)+b_n\sin\!\left(\frac{\pi n}L x\right)\right) }[/math], כאשר מתנאי ההתחלה נובע ש־[math]\displaystyle{ a_n,b_n }[/math] מקדמי טור פורייה של [math]\displaystyle{ f }[/math] ב־[math]\displaystyle{ [-L,L] }[/math].
  • שימוש בהתמרת פורייה: נסמן [math]\displaystyle{ \hat u(\omega,t)=\frac1{2\pi}\int\limits_{-\infty}^\infty u(x,t)\mathrm e^{-\mathrm i\omega x}\mathrm dx }[/math] (כלומר, זו התמרת פורייה של [math]\displaystyle{ u }[/math] לפי [math]\displaystyle{ x }[/math]). לפי המד״ח [math]\displaystyle{ \frac{\partial\hat u}{\partial t}(\omega,t)=\frac k{2\pi}\int\limits_{-\infty}^\infty \frac{\partial^2 u}{\partial x^2}(x,t)\mathrm e^{-\mathrm i\omega x}\mathrm dx=k\mathcal F\!\left[\frac{\partial^2u}{\partial x^2}\right]\!(\omega,t)=k(\mathrm i\omega)^2\hat u(\omega,t) }[/math]. פתרונה של המד״ר הזו הוא [math]\displaystyle{ \hat u(\omega,t)=A(\omega)\mathrm e^{-k\omega^2t} }[/math], והצבה של [math]\displaystyle{ t=0 }[/math] תתן [math]\displaystyle{ A(\omega)=\hat u(\omega,0)=\hat f(\omega) }[/math]. עתה נחפש פונקציה [math]\displaystyle{ g }[/math] כך שהתמרת פורייה שלה לפי [math]\displaystyle{ x }[/math] תהא [math]\displaystyle{ \hat g(\omega,t)=\mathrm e^{-k\omega^2 t} }[/math]. לפי ההתמרה של [math]\displaystyle{ \mathrm e^{-x^2} }[/math] וכמה מתכונות ההתמרה נקבל [math]\displaystyle{ g(x,t)=\sqrt\frac\pi{kt}\exp\!\left(-\frac{x^2}{4kt}\right) }[/math] ולכן, לפי משפט הקונבולוציה, [math]\displaystyle{ u(x,t)=\frac{g(x,t)*f(x)}{2\pi}=\frac1{2\pi}\int\limits_{-\infty}^\infty f(s)\sqrt\frac\pi{kt}\exp\!\left(-\frac{(x-s)^2}{4kt}\right)\mathrm ds }[/math].
  • משוואות גלים: נתונה המד״ח [math]\displaystyle{ \frac{\partial^2 u}{\partial t^2}=k^2\frac{\partial^2 u}{\partial x^2} }[/math] ([math]\displaystyle{ k\ne0 }[/math] קבוע) עם תנאי ההתחלה [math]\displaystyle{ u(x,0)=\varphi(x) }[/math] ו־[math]\displaystyle{ \frac{\partial u}{\partial t}(x,0)=\psi(x) }[/math] ותנאי שפה [math]\displaystyle{ u(0,t)=u(L,t)=0 }[/math]. נניח כי הפתרון מוצג כמכפלה [math]\displaystyle{ X(x)\cdot T(t) }[/math] (שיטת הפרדת משתנים) ולכן [math]\displaystyle{ \frac{T''}{k^2 T}=\frac{X''}X=:-\lambda }[/math] עבור [math]\displaystyle{ \lambda }[/math] מספר חיובי. נקבל שתי מד״ר נפרדות: [math]\displaystyle{ \begin{cases}X''+\lambda X=0\\T''+k^2\lambda T=0\end{cases} }[/math], ובאופן דומה למה שעשינו במשוואות מעבר חום נקבל [math]\displaystyle{ u(x,t)=\sum_{n=1}^\infty\left(a_n\cos\!\left(\frac{\pi kn}L t\right)+b_n\sin\!\left(\frac{\pi kn}L t\right)\right)\sin\!\left(\frac{\pi n}L x\right) }[/math] כאשר [math]\displaystyle{ a_n=\frac2L\int\limits_0^L\varphi(x)\sin\!\left(\frac{\pi n}L x\right)\mathrm dx\ \and\ b_n=\frac2{\pi kn}\int\limits_0^L\psi(x)\sin\!\left(\frac{\pi n}L x\right)\mathrm dx }[/math].
  • נתונה מד״ר לינארית עם מקדמים קבועים. נפעיל התמרת לפלס על אגפי המד״ר, נבודד את [math]\displaystyle{ \mathcal L[y] }[/math] (תוך שימוש בהתמרת הנגזרת ובנוסחאות אחרות) ונמצא את ההתמרה ההפוכה שלה.