חשבון אינפיניטיסימלי 2 - פתרון מועד א תשע"ג
שאלה 2
סעיף א
[math]\displaystyle{ \int\frac{1}{e^x+e^{-x}}\mathrm{d}x }[/math]
נציב [math]\displaystyle{ t=e^x }[/math] ואז [math]\displaystyle{ \mathrm{d}t=e^x\mathrm{d}x=t\mathrm{d}x }[/math]
לאחר הצבה נקבל
[math]\displaystyle{ \int\frac{1}{e^x+e^{-x}}\mathrm{d}x=\int\frac{1}{t+\frac{1}{t}}\frac{1}{t}\mathrm{d}t }[/math]
[math]\displaystyle{ =\int\frac{1}{t^2+1}=\arctan t+c=\arctan e^x+c }[/math]