חשבון אינפיניטיסימלי 2 - פתרון מועד א תשע"ג

מתוך Math-Wiki

שאלה 2

סעיף א

[math]\displaystyle{ \int\frac{1}{e^x+e^{-x}}\mathrm{d}x }[/math]

נציב [math]\displaystyle{ t=e^x }[/math] ואז [math]\displaystyle{ \mathrm{d}t=e^x\mathrm{d}x=t\mathrm{d}x }[/math]

לאחר הצבה נקבל

[math]\displaystyle{ \int\frac{1}{e^x+e^{-x}}\mathrm{d}x=\int\frac{1}{t+\frac{1}{t}}\frac{1}{t}\mathrm{d}t }[/math]

[math]\displaystyle{ =\int\frac{1}{t^2+1}=\arctan t+c=\arctan e^x+c }[/math]

סעיף ב

[math]\displaystyle{ \int\frac{x^3+1}{x^3-1} }[/math]

על ידי חילוק פולינומים קל לראות ש

[math]\displaystyle{ \frac{x^3+1}{x^3-1}=1+\frac{2}{x^3-1} }[/math]

אז נתמקד בחישוב [math]\displaystyle{ \int\frac{2}{x^3-1}=\int\frac{2}{(x-1)(x^2+x+1)} }[/math]

לפי האלגוריתם לחישוב אינטגרל של פונקציה רציונאלית נחפש

[math]\displaystyle{ \frac{2}{(x-1)(x^2+x+1)}=\frac{A}{x-1}+\frac{Bx+C}{x^2+x+1} }[/math]

[math]\displaystyle{ =\frac{Ax^2+Ax+A+Bx^2-Bx+Cx-C}{(x-1)(x^2+x+1)} }[/math]

כלומר קיבלנו מערכת משוואות

[math]\displaystyle{ A+B=0, \quad A-B+C=0,\quad A-C=2 }[/math]

וקל לראות שהפתרון שלה הוא:

[math]\displaystyle{ A=\frac{2}{3},\quad B=-\frac{2}{3},\quad C= -\frac{4}{3} }[/math]