חשבון אינפיניטיסימלי 2 - פתרון מועד א תשע"ג
שאלה 2
סעיף א
[math]\displaystyle{ \int\frac{1}{e^x+e^{-x}}\mathrm{d}x }[/math]
נציב [math]\displaystyle{ t=e^x }[/math] ואז [math]\displaystyle{ \mathrm{d}t=e^x\mathrm{d}x=t\mathrm{d}x }[/math]
לאחר הצבה נקבל
[math]\displaystyle{ \int\frac{1}{e^x+e^{-x}}\mathrm{d}x=\int\frac{1}{t+\frac{1}{t}}\frac{1}{t}\mathrm{d}t }[/math]
[math]\displaystyle{ =\int\frac{1}{t^2+1}=\arctan t+c=\arctan e^x+c }[/math]
סעיף ב
[math]\displaystyle{ \int\frac{x^3+1}{x^3-1}\mathrm{d}x }[/math]
על ידי חילוק פולינומים קל לראות ש
[math]\displaystyle{ \frac{x^3+1}{x^3-1}=1+\frac{2}{x^3-1} }[/math]
אז נתמקד בחישוב [math]\displaystyle{ \int\frac{2}{x^3-1}\mathrm{d}x=\int\frac{2}{(x-1)(x^2+x+1)}\mathrm{d}x }[/math]
לפי האלגוריתם לחישוב אינטגרל של פונקציה רציונאלית נחפש
[math]\displaystyle{ \frac{2}{(x-1)(x^2+x+1)}=\frac{A}{x-1}+\frac{Bx+C}{x^2+x+1} }[/math]
[math]\displaystyle{ =\frac{Ax^2+Ax+A+Bx^2-Bx+Cx-C}{(x-1)(x^2+x+1)} }[/math]
כלומר קיבלנו מערכת משוואות
[math]\displaystyle{ A+B=0, \quad A-B+C=0,\quad A-C=2 }[/math]
וקל לראות שהפתרון שלה הוא:
[math]\displaystyle{ A=\frac{2}{3},\quad B=-\frac{2}{3},\quad C= -\frac{4}{3} }[/math]
ברור ש
[math]\displaystyle{ \int\frac{\frac{2}{3}}{x-1}\mathrm{d}x=\frac{2}{3}\ln|x-1|+c }[/math]
נותר לחשב את [math]\displaystyle{ -\frac{2}{3}\int\frac{x+2}{x^2+x+1}\mathrm{d}x }[/math]
לפי השלמה לריבוע
[math]\displaystyle{ \int\frac{x+2}{x^2+x+1}\mathrm{d}x=\int\frac{x+2}{(x+\frac{1}{2})^2+\frac{3}{4}}\mathrm{d}x }[/math]
נבצע הצבה [math]\displaystyle{ t=x+\frac{1}{2} }[/math] (רק בשביל נוחות) ואז נישאר עם
[math]\displaystyle{ \int\frac{t+\frac{3}{4}}{t^2+\frac{3}{4}}\mathrm{d}t=\frac{1}{2}\int\frac{2t+\frac{3}{2}}{t^2+\frac{3}{4}}\mathrm{d}t }[/math]
[math]\displaystyle{ =\frac{1}{2}\int\frac{2t}{t^2+\frac{3}{4}}\mathrm{d}t+\int\frac{\frac{3}{4}}{t^2+\frac{3}{4}}\mathrm{d}t }[/math]
[math]\displaystyle{ =\frac{1}{2}\ln(t^2+\frac{3}{4})+\frac{3}{4}\frac{1}{\sqrt{\frac{3}{4}}}\arctan\frac{t}{\sqrt{\frac{3}{4}}}+c }[/math]
[math]\displaystyle{ =\frac{1}{2}\ln|(x+\frac{1}{2})^2+\frac{3}{4}|+\sqrt{\frac{3}{4}}\arctan\frac{x+\frac{1}{2}}{\sqrt{\frac{3}{4}}}+c }[/math]
ולכן [math]\displaystyle{ -\frac{2}{3}\int\frac{x+2}{x^2+x+1}\mathrm{d}x=-\frac{2}{3}(\frac{1}{2}\ln|(x+\frac{1}{2})^2+\frac{3}{4}|+\sqrt{\frac{3}{4}}\arctan\frac{x+\frac{1}{2}}{\sqrt{\frac{3}{4}}})+c }[/math]
אם נסכום את כל מה שקיבלנו נקבל שהתוצאה היא
[math]\displaystyle{ x+\frac{2}{3}\ln|x-1|-\frac{2}{3}(\frac{1}{2}\ln|(x+\frac{1}{2})^2+\frac{3}{4}|+\sqrt{\frac{3}{4}}\arctan\frac{x+\frac{1}{2}}{\sqrt{\frac{3}{4}}})+c }[/math]