שיחה:89-214 סמסטר א' תשעד

מתוך Math-Wiki

שאלה 3 בתרגיל בית 1

נניח אני רוצה לבטא את המחלק המשותף המקסימלי של 840,575 כצירוף לינארי שלהם.

בשלב הראשון, אני מוצא את המחלק המשותף המקסימלי ע"י אלגוריתם אוקלידיס באופן הבא:

zz (840,575)=(575,265)=(265,45)=(45,40)=(40,5)=5 zz

המעבר הראשון משמאל לימין, נובע מכך ש: zz 840=575*1+265 zz

המעבר השני משמאל לימין, נובע מכך ש: zz 575=265*2+45 zz

המעבר השלישי משמאל לימין נובע מכך ש: zz 265=45*5+40 zz

המעבר הרביעי משמאל לימין נובע מכך ש: zz 45=40*1+5 zz

המעבר האחרון נובע מכך שהמחלק המשותף המקסימלי של 40 ו-5 הוא 5.


כעת מה שאני רוצה לעשות, זה לבטא את המחלק המשותף המקסימלי של 840,575 שהוא כאמור המספר 5, כצירוף לינארי של 840, 575. כיצד בדיוק אני עושה את זה. ראיתי פתרון בתרגול, אבל השיטה לא ממש מובנת לי. אשמח להסבר מפורט, כיצד בדיוק אני צריך לעשות את זה.


תודה מראש ושבת שלום!

שתי הערות עריכה בויקי: כדאי להשתמש בכותרות (מוסיפים עם מספר של "=" משני הצדדים) וכדאי להשתמש בכתיב מתמטי (הכפתור עם [math]\displaystyle{ \sqrt{n} }[/math]) כדי להכניס ביטויים מתמטיים.
התשובה לשאלה היא פשוט ליישם את אלגוריתם אוקלידס המורחב. רמז קל: זה גם מה שנדרש בשאלה 1. בקישור יש כמה דוגמאות מפורטות.
הדרך שבה מצאת את המחלק המשותף המקסימלי נכונה, ודרושה להמשך. בכל שלב (מעבר) באלגוריתם אוקלידס אפשר להציג את שארית החלוקה [math]\displaystyle{ r }[/math] כצירוף של שני המספרים שמחלקים [math]\displaystyle{ r=n-qm }[/math]. נתחיל מן השלב האחרון ונתקדם "מעלה":
  • בסוף קיבלת כי [math]\displaystyle{ 5 = 1 \cdot 45 - 1 \cdot 40 }[/math].
  • נציב את הביטוי ל-[math]\displaystyle{ 40 }[/math] מהשלב אחד לפני האחרון [math]\displaystyle{ 5 = 1 \cdot 45 - 1 \cdot (265 - 5 \cdot 45) }[/math]. אם נצמצם נקבל [math]\displaystyle{ 5 = -1 \cdot 265 + 6 \cdot 45 }[/math].
  • כעת מציבים ביטוי עבור [math]\displaystyle{ 45 }[/math] עם [math]\displaystyle{ 265 }[/math] ו-[math]\displaystyle{ 575 }[/math].
כך ממשיכים עד שמגיעים לביטוי עם המספרים המקוריים שעבורם חיפשנו [math]\displaystyle{ \mathrm{gcd} }[/math].

אם f | 2c וגם f | 2d האם אני יכול להסיק מכך ש- ( f | (2c,2d  ?

תודה.

כרמז, מה יקרה אם פשוט נסמן [math]\displaystyle{ n = 2c }[/math] וגם [math]\displaystyle{ m = 2d }[/math]? מה יודעים אם [math]\displaystyle{ f | n,m }[/math]?

שאלה 4 סעיף ג'

שתיי שאלות:

1. האם אני יכול לומר שקיים מספר x כך ש- x|a+b וגם x|a-b? אם כן, למה?

2. במידה ואני יכול לטעון את מה שכתבתי בשאלה 1, ובמידה והראיתי ש- x|2d, האם אני יכול לומר ש- zz (a+b,a-b) | 2d zz ? אם כן, למה?