שיחה:83-116 תשעד סמסטר א
הוספת שאלה חדשה
הוסף שאלה חדשה (רשום כותרת לשאלה, רשום את תוכן השאלה ולחץ על שמירה למטה מימין לסיום).
-עזרה על עיצוב הטקסט וכתיב מתמטי תוכלו למצוא כאן
אם אתם רוצים לשאול שאלה עליכם ליצור חשבון משתמש באתר.
שאלות
5-6
מה אומר הסימן דלטא בתרגילים 5 ו6?
עוד לא הגענו לזה. אלו תרגילים בתורת הקב', נלמד ביום רביעי. עדי
שאלה על תרגיל 2 שאלה 2
בשאלה 2 בסעיף ד'- מה ההגדרה לקבוצה חלקית של A? האם זו תת-קבוצה של A? האם בכל קבוצה שהיא תמיד אפשר להגיד שה"קבוצה ריקה" היא תת קבוצה שלה? תודה.
בעיקרון לא הגענו לזה בשיעור, אבל:
מה ההגדרה לקבוצה חלקית של A? האם זו תת-קבוצה של A? כן
האם בכל קבוצה שהיא תמיד אפשר להגיד שה"קבוצה ריקה" היא תת קבוצה שלה? כן, וגם הקבוצה עצמה: [math]\displaystyle{ \forall A\ \ \ A,\emptyset\subseteq A }[/math]. עדי
דף1-תרגיל5
שימו לב! כאשר נתון X ורוצים שתוכיחו Y, התחילו מלשאול-מה יוכיח לנו את Y? אח"כ השתמשו בנתון והגיעו למסקנה.
למשל בדף 1-שאלה 5, נתון שוויון בין ההפרש הסימטרי של A ו-B להפרש הסימטרי של A ו-C. רוצים שתוכיחו B=C. אם תתחילו משייכות להפרש הסימטרי לא יהיה לכם יותר מידי לאן להתקדם. התחילו מ-"מה מוכיח לנו שוויון בין קבוצות B ו-C(כנדרש)?" הכלה דו כיוונית! כלומר, ניקח איבר ב-B, נשתמש בנתון, ונירצה לקבל שהאיבר ב-C. וכנ"ל בכיוון ההפוך.
רמז- לאחר שלקחתם איבר ב-B בידקו מה קורה אם הוא שייך ל-A ואם לאו. עדי
תרגיל 2 שאלה 3 א'
ממ היו לי בעיות למצוא קבוצות שמתאימות לדוגמה הזאת. יש לך איזשהי דוגמה שתוכלי לעזור לי להבין את העניין? תודה
(זכור, שייכות איננה הכלה.) קבוצות בעלות איבר בודד יפתרו את הבעיה, מיהו האיבר הבודד בכל אחת...? עדי
תרגיל 2
היי האם הגענו לשלב שבו אנחנו יכולים לפתור את שאלות 8, 9 ו10? תודה! עמית מיכאלי
8-כן.
ל-9-אעלה הגדרה אחרי התירגול הקרוב.
את 10 סביר שראיתם בהרצאה אך עוד לא בתירגול.
עדי
תרגיל 2 שאלה 9
שלום עדי, קראנו את ההסבר שהעלית לאתר ובכל זאת לא הבנו מה אנחנו אמורים לעשות בשאלה, אם נוכל לקבל הסבר יותר מפורט לגבי השאלה, נשמח. אבישי וישי
בבקשה: נתונה הקבוצה [math]\displaystyle{ I=\{2,3,4\} }[/math]. נגדיר את הקבוצות [math]\displaystyle{ A_i: i\in I }[/math], כלומר [math]\displaystyle{ A_2,A_3,A_4 }[/math], באופן הבא:
[math]\displaystyle{ \forall i\in I\ A_i=\{x:x=i^2\cdot k,\ k\in N\} }[/math], ז"א [math]\displaystyle{ A_i }[/math] מוגדרת להיות אוסף כל הכפולות השלמות של [math]\displaystyle{ i^2 }[/math]. לדוגמא:
[math]\displaystyle{ A_3=\{x:x=3^2\cdot k,\ k\in N\}=\{\ 3^2\cdot 1,\ 3^2\cdot 2,\ 3^2\cdot 3,\ 3^2\cdot 4,...\}=\{9,18,27,36,...\}=\{9k:k\in N\} }[/math].
כעת, נשאלת השאלה מי מהבאים: 1,8,1152 שייך לאיחוד שלושת הקב' (כלומר שייך לפחות לאחת מהן, או במילים אחרות הוא כפולה שלמה של 4 או 9 או 16), ומי שייך לחיתוך שלושת הקבוצות (כלומר, שייך לכולן, או במילים אחרות הוא כפולה שלמה של 4 וגם של 9 וגם של 16).
אנא עדכנו אותי אם התשובה עוזרת. עדי
תרגיל 3 שאלה 4
היי עדי, רק רציתי לוודא אם הבנתי נכון. בשאלה זו בעצם אני מתבקש 'רק' להוכיח שהיחס G הוא גם רפלקסיבי, גם סימטרי, וגם טרנזיטיבי נכון? לא צריך להוכיח שהוא 'מעל AxB'?
יש גם להראות שהוא על AXB, אבל זה החלק הקצר יותר.
שימו לב! האיברים של יחס כלשהו R הם זוגות סדורים השייכים למכפלה קרטזית בין שתי קבוצות. מה קורה כאשר הקבוצות עצמן הן מכפלות קרטזיות? אז האיברים ב-R הם זוגות סדורים של זוגות סדורים.
[math]\displaystyle{ (a,b)\in A\times A,\ (c,d)\in C\times C\ \ then\ \ ((a,c),(b,d))\in (A\times C)^2\ \ }[/math]
ולכן תתי קב' שלה יהיו יחסים על [math]\displaystyle{ A\times C }[/math].
כמו כן [math]\displaystyle{ \ ((a,b),(c,d))\in A^2\times C^2 }[/math] ולכן תתי קב' שלה יהיו יחסים מ-[math]\displaystyle{ A^2 }[/math] ל-[math]\displaystyle{ C^2 }[/math].
אז, מה קורה לבדיקות הרפלקסיביות, סימטריות וטרנזיטיביות? אם ביחס על קבוצה בודדת בדקנו את התכונות בין איברים בודדים אז ביחס על מכפלה קרטזית נבדוק את התכונות בין זוגות סדורים.
למשל, אם תנאי הסימטריות דורש לוודא ש- [math]\displaystyle{ xRy\Rightarrow yRx }[/math]
אז ביחס מעל מכפלה קרטזית נוודא ש- [math]\displaystyle{ (x_1,x_2)R(y_1,y_2)\Rightarrow (y_1,y_2)R(x_1,x_2) }[/math]
כלומר נתחיל מ- [math]\displaystyle{ (x_1,x_2)R(y_1,y_2) }[/math], ניישם את היחס ונבדוק האם זה גורר ש- [math]\displaystyle{ (y_1,y_2)R(x_1,x_2) }[/math]. עדי
תרגיל 3 שאלה 1
שלום עדי, כשפיתחתי את הביטוי AXB=BXA שבשאלה הגעתי שלכל a,b:
(a∈A) & (b∈B) אם ורק אם (a∈B) & (b∈A) איך אני ממשיך מפה? האם לנסות את 2 האפשרויות- פעם אחת כששניהם מתקיימים ופעם אחת כששניהם לא מתקיימים? תודה, מרדכי.
למעשה כמעט סיימת. שים לב מה רשמת, [math]\displaystyle{ \ \ (a\in A \Rightarrow a\in B) \and (b\in B \Rightarrow b\in A) }[/math], זה בדיוק התנאי לשוויון קבוצות. רק נותר לך לטפל במיקרים שלא קיים [math]\displaystyle{ \ a\in A }[/math] או לא קיים [math]\displaystyle{ b\in B }[/math]. עדי
תרגיל 4
באופן כללי, כשרשום 'הוכח כי קיימת' זה שקול ל'תן דוגמא ל..'?
כן, תן דוגמא, אבל גם הוכח שהיא אכן עומדת בתנאי הדרוש. למשל ב-1א, תן דוגמא לפונקציה הנדרשת והוכח שהיא אכן חח"ע כפי שלמדנו להוכיח זאת. עדי
אוקיי, מודה לך. ועוד משהו קטן - עד איזה שאלה בתרגיל 4 כיסינו בחומר?
1, 2, 3ג ו-5 (בהרצאה כיסיתם הכל). תאריך ההגשה לא לרביעי הקרוב כמובן. עדי
דף 3-שאלה 4
שלום לכולם,
רבים ממכם ניגשו אלי עם שאלה זאת ע"מ שאבדוק אם פיתרונכם תקין.
לאור כך ובשל העובדה שמבנה התרגיל שונה מקודמיו אבקש מכם בכל לשון של בקשה להעמיק בקריאת הפיתרון המצורף ולהעלות שאלות אם משהו לא ברור.
עדי
תרגיל: יהי [math]\displaystyle{ E }[/math] יח"ש על [math]\displaystyle{ A }[/math] ויהי [math]\displaystyle{ F }[/math] יח"ש על [math]\displaystyle{ B }[/math]. תהי [math]\displaystyle{ G=\{((a_1,b_1),(a_2,b_2)):(a_1,a_2)\in E,\ (b_1,b_2)\in F\} }[/math].
הוכח כי [math]\displaystyle{ G }[/math] יח"ש על [math]\displaystyle{ A\times B }[/math].
פתרון: ראשית, בואו נבין היטב את הגדרת [math]\displaystyle{ G }[/math].
יחס זה בנוי מזוגות סדורים של זוגות סדורים (לא [math]\displaystyle{ (a_1,b_1),(a_2,b_2) }[/math] שזו סתם רשימה של שני איברים, לא [math]\displaystyle{ (a_1,b_1)\times (a_2,b_2) }[/math] שאין לי מושג מה זה, ועוד כל מיני צורות כאלו ואחרות שהופיעו בפיתרונותיכם), כך שהקואורדינטות הראשונות מתייחסות ב-E והקואורדינטות השניות מתייחסות ב-F (ולא הזוג הראשון ב-E והזוג השני ב-F).
יש להוכיח ש-G יחס על [math]\displaystyle{ A\times B }[/math]:
כלומר, נתבונן על שתי הקואורדינטות באייברי G, בכל אחת מהן יושב זוג סדור אשר יש להראות שהוא מ-[math]\displaystyle{ A\times B }[/math]. ע"פ הגדרה
[math]\displaystyle{ (a_1,a_2)\in E,\ (b_1,b_2)\in F\ \Rightarrow a_1\in A \and b_1\in B \and a_2\in A \and b_2\in B }[/math],
היות וידוע כי E פועלת על A ו-F פועלת על B.
ע"פ הגדרת מכפלה קרטזית זה אומר ש- [math]\displaystyle{ (a_1,b_1)\in A\times B \and (a_2,b_2)\in A\times B }[/math],
וע"פ הגדרת יחס זה אומר ש-G היא תת קבוצה של [math]\displaystyle{ (A\times B)^2 }[/math] ולכן יחס על [math]\displaystyle{ A\times B }[/math].
כעת נותר להכיח שיחס זה הוא שקילות, כלומר:
רפלקסיביות: נרצה להוכיח שכל איבר מתייחס לעצמו ב-G.
בדיקת רפלקסיביות מתחילה מבדיקת כל איבר בקבוצה עליה פועל היחס שמוכיחים. אנחנו מוכיחים על G אשר כאמור פועלת על [math]\displaystyle{ A\times B }[/math], ולכן:
[math]\displaystyle{ \forall (a,b)\in A\times B }[/math]
(מה ידוע לנו לכל איבר כזה?)
[math]\displaystyle{ \Rightarrow a\in A \and b\in B }[/math]
(מה ידוע לנו לכל איבר ב-A ולכל איבר ב-B? היות ש-E ו-F יח"ש ידוע לנו שכל איבר ב-A מתייחס לעצמו ב-E וכל איבר ב-B מתייחס לעצמו ב-F)
[math]\displaystyle{ \Rightarrow (a,a)\in E \and (b,b)\in F }[/math]
לפי הגדרת G, עבור איבר ב-E ואיבר ב-F, זה בדיוק אומר שהקואורדינטות הראשונות מתייחסות לקואורדינטות השניות ב-G. כלומר:
[math]\displaystyle{ ((a,b),(a,b))\in G }[/math].
סה"כ קיבלנו [math]\displaystyle{ \forall (a,b)\in A\times B\ \ ((a,b),(a,b))\in G }[/math] ולכן G רפלקסיבי.
סימטריות: נרצה להוכיח שאם איבר מתייחס לאחר אז האחר מתייחס לאיבר ב-G.
בדיקת סימטריות מתחילה מאיבר שמתייחס לאחר ביחס שמוכיחים. אנחנו מוכיחים על G אשר כאמור פועלת על [math]\displaystyle{ A\times B }[/math], ולכן:
[math]\displaystyle{ ((a_1,b_1),(a_2,b_2))\in G }[/math]
(מה זה אומר לנו ע"פ הגדרה?)
[math]\displaystyle{ \Rightarrow (a_1,a_2)\in E \and (b_1,b_2)\in F }[/math]
היות ש-E ו-F יח"ש זה אומר
[math]\displaystyle{ (a_2,a_1)\in E \and (b_2,b_1)\in F }[/math]
לפי הגדרת G, עבור איבר ב-E ואיבר ב-F, זה בדיוק אומר שהקואורדינטות הראשונות מתייחסות לקואורדינטות השניות ב-G. כלומר:
[math]\displaystyle{ ((a_2,b_2),(a_1,b_1))\in G }[/math]
סה"כ קיבלנו [math]\displaystyle{ ((a_1,b_1),(a_2,b_2))\in G\Rightarrow ((a_2,b_2),(a_1,b_1))\in G }[/math] ולכן G סימטרי.
טרנזיטיביות: נרצה להוכיח שאם איבר1 מתייחס לאיבר2 שמתייחס לאיבר3 אז איבר1 מתייחס לאיבר3 ב-G.
בדיקת טרנזיטיביות מתחילה איבר1 מתייחס לאיבר2 ואיבר2 שמתייחס לאיבר3 ביחס שמוכיחים. אנחנו מוכיחים על G אשר כאמור פועלת על [math]\displaystyle{ A\times B }[/math], ולכן:
[math]\displaystyle{ ((a_1,b_1),(a_2,b_2))\in G\and ((a_2,b_2),(a_3,b_3))\in G }[/math]
(מה זה אומר לנו ע"פ הגדרה?)
[math]\displaystyle{ \Rightarrow \underline{(a_1,a_2)\in E} \and \underline{\underline{(b_1,b_2)\in F}}\and \underline{(a_2,a_3)\in E} \and \underline{\underline{(b_2,b_3)\in F}} }[/math]
היות ש-E ו-F יח"ש זה אומר
[math]\displaystyle{ (a_1,a_3)\in E \and (b_1,b_3)\in F }[/math]
לפי הגדרת G, עבור איבר ב-E ואיבר ב-F, זה בדיוק אומר שהקואורדינטות הראשונות מתייחסות לקואורדינטות השניות ב-G. כלומר:
[math]\displaystyle{ ((a_1,b_1),(a_3,b_3))\in G }[/math]
סה"כ קיבלנו [math]\displaystyle{ ((a_1,b_1),(a_2,b_2))\in G\and ((a_2,b_2),(a_3,b_3))\in G\Rightarrow ((a_1,b_1),(a_3,b_3))\in G }[/math] ולכן G טרנזיטיבי.
קבוצת החזקה (תרגיל 4 שאלה 5)
האם זה נכון לומר שאם {X} מוכל ב P(B) אזי x שייך לקבוצה B?
לא. אם {X} מוכל ב [math]\displaystyle{ P(B) }[/math] אז X שייך ל [math]\displaystyle{ P(B) }[/math] ולכן X מוכל ב-B.
למשל [math]\displaystyle{ B=\{1,2,3\} =\gt \{1\}\subseteq B =\gt \{1\}\in P(B) =\gt \{\{1\}\}\subseteq P(B) }[/math]
אבל [math]\displaystyle{ \{1\} }[/math] לא שייך ל-B הוא מוכל בו ({1} בתפקיד X). עדי
תרגיל 4
היי
האם בעקבות הדחיה של התרגול היום ליום ב' זה אומר שתהיה דחיה בתאריך ההגשה?
אפשרי. נחליט לפי ההתקדמות בשיעור. עדי
תרגיל 4 שאלה 4
היי עדי, אני בתרגיל 4 שאלה 4 איך אני מתחיל להוכיח? האם גם פה מתחילים ממה שצריך להוכיה או מהנתונים?
ולדוגמא בסעי' 1 איך מוכיחים שאם C אז או A או B? כי אם מנסים בשלילה-אז גם אם לא A, עדיין ייתכן שכן C, כיוון שאולי כן B. תודה
תמיד תתחיל ממה שצריך להוכיח ותשתמש בנתונים.
(*) תזכרו שביחס להרכבה הראינו שאם היא חח"ע אז הפונ' הפנימית חח"ע ואם היא על אז הפונ' החיצונית על. השתמשו בתכונות אלו בשאלה זו.
הכוונה האם קורה אחד מהם. בדוק כל אחד בנפרד.
הערה: בסעיפים 2,3 קיימים נתונים מיותרים. את 2 ניתן להוכיח לפי (*) גם בלי [math]\displaystyle{ hg }[/math] חח"ע וב-3, לפי (*) [math]\displaystyle{ hg }[/math] על גם בלי שיהיה נתון.
המלצה: אם התכונה שציינתי לא נותנת את המבוקש נסו לקבל אינטואיציה לדוגמא נגדית בדיאגרמה ואז תרגמו אותה למיספרים באופן פורמלי. דוגמא נגדית צריכה להיות פשוטה ככל האפשר.
לדוגמא סעיף 1:
[math]\displaystyle{ hgf }[/math] חח"ע ועל. אזי, לפי (*) [math]\displaystyle{ f,gf }[/math] חח"ע ו-[math]\displaystyle{ h,hg }[/math] על (חישבו ונמקו למה). מאף אחד מהם לא נובע ש-g חח"ע או על. ננסה למצוא דוגמא נגדית.
נרצה ש-f חח"ע, h על ו-g לא זה ולא זה:
[math]\displaystyle{ A\rightarrow_f B \rightarrow_g C \rightarrow_h D }[/math]
[math]\displaystyle{ .\ \ \rightarrow\ \ .\ \ \rightarrow\ \ .\ \ \rightarrow\ \ . }[/math]
[math]\displaystyle{ \ \ \ \ \ \ .\nearrow\ \ \ \ .\nearrow\ \ \ \ \ }[/math]