קוד:הגדרת איזומורפיזם של מרחבי מכפלה פנימית

מתוך Math-Wiki
גרסה מ־20:15, 4 באוקטובר 2014 מאת ארז שיינר (שיחה | תרומות) (2 גרסאות יובאו)
(הבדל) → הגרסה הקודמת | הגרסה האחרונה (הבדל) | הגרסה הבאה ← (הבדל)

נרצה להוכיח כעת שאם יש לנו שני מרחבים וקטוריים עם מכפלה פנימית מאותו מימד, הם בעצם "אותו דבר" (רק משנים את הסמלים של האיברים). כזכור, כדי לומר ששני מרחבים וקטוריים הם "אותו דבר", חיפשנו העתקה לינארית חח"ע ועל ביניהם, הנקראת גם \textbf{איזומורפיזם}. בלינארית 1 הוכחנו ששני מרחבים וקטוריים איזומורפיים אם ורק אם יש להם אותו מימד. כעת ננסה לראות האם עובדה זו נכונה גם אם יש עליהם מכפלה פנימית.

\begin{definition}

יהיו $V,V'$ מרחבי מכפלה פנימית. אומרים ש-$V$ \textbf{איזומורפי} ל-$V'$ (ומסמנים $V\cong V'$), אם קיים איזומורפיזם $f:V\rightarrow V'$ של מרחבים וקטוריים, כך שלכל $u,v\in V$ מתקיים $\left \langle f\left(u \right ),f\left(v \right ) \right \rangle=\left \langle u,v \right \rangle$.

\end{definition}