קוד:הגדרת פולינומים והפעולות עליהם

מתוך Math-Wiki
גרסה מ־20:16, 4 באוקטובר 2014 מאת ארז שיינר (שיחה | תרומות) (4 גרסאות יובאו)
(הבדל) → הגרסה הקודמת | הגרסה האחרונה (הבדל) | הגרסה הבאה ← (הבדל)

\begin{definition}

\textbf{פולינום} הוא פונקציה מהצורה $f\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$, כאשר $a_0,a_1,\dots,a_n\in\mathbb{F}$.

\end{definition}

\begin{remark}

ניתן להגדיר לכל $\alpha\in\mathbb{F}$, $f\left(\alpha\right)=a_n\alpha^n+a_{n-1}\alpha^{n-1}+\cdots+a_1\alpha+a_0$.

נגדיר חיבור וכפל פולינומים באופן הבא: עבור $f\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$ ו-$g\left(x\right)=b_nx^n+b_{n-1}x^{n-1}+\cdots+b_1x+b_0$,

\begin{enumerate}

\item $$f+g:=\sum_{j=0}^{\max\left\{ m,n\right \}}\left(a_j+b_j\right)x^j$$ (כאשר לכל $i>n$, $a_i=0$ ולכל $i>m$, $b_i=0$). במילים אחרות - חיבור לפי החזקות.

\item $$fg=f\cdot g:=a_0b_0+\left(a_1b_0+a_0b_1 \right )x+\left(a_2b_0+a_1b_1+a_0b_2 \right )x^2+\cdots$$

\end{enumerate}

עם ההגדרות הללו מתקיים $\left(f+g \right )\left(\alpha \right )=f\left(\alpha \right )+g\left(\alpha \right )$ ו-$\left(fg \right )\left(\alpha \right )=f\left(\alpha \right )g\left(\alpha \right )$.

\end{remark}