קוד:חסמים

מתוך Math-Wiki

<latex2pdf> <tex>קוד:ראש</tex>

\begin{definition} תהי קבוצה $A\subseteq \mathbb{R}$, אזי: \begin{enumerate} \item $M$ נקרא חסם מלעיל של A אם $\forall a\in A:a\leq M$ (כלומר שגדול/שווה מכל איברי הקבוצה)

\item $m$ נקרא חסם מלרע של A אם $\forall a\in A:a\geq m$

\item חסם מלעיל של A נקרא מקסימום אם הוא שייך לקבוצה A (בעצם המקסימום זה איבר בקבוצה שגדול או שווה לכל איברי הקבוצה)

\item חסם מלרע של A נקרא מינימום אם הוא שייך לקבוצה A

\item חסם מלעיל של A נקרא החסם העליון של A אם אין ל-A חסם מלעיל קטן ממש ממנו, מסמנים אותו $\sup A $ (מהמילה $\text{superior}$ )

\item חסם מלרע של A נקרא החסם התחתון של A אם אין ל-A חסם מלרע גדול ממש ממנו, מסמנים אותו $\inf A $ (מהמילה $\text{inferior}$)

\end{enumerate}

\end{definition}


\begin{example} ניקח לדוגמה את $A=\{1,2,3,-5,463\} $\\ $1000$ חסם מלעיל של $A$ משום שגדול או שווה לכל איברי הקבוצה.\\ גם $683$ חסם מלעיל של $A$, מאותה סיבה. \\ $463$ הוא חסם מלעיל מיוחד, הוא המקסימום, הוא חסם מלעיל שנמצא בתוך $A$ עצמה, ובעצם גם החסם העליון משום שאם היה חסם מלעיל קטן ממנו, אז הוא היה קטן מ- $463\in A $ , כלומר קטן ממש מאיבר בקבוצה. (בעצם כל מקסימום הוא חסם עליון).\\ \\ $-5.5 $ חסם מלרע של $A$ משום שקטן או שווה לכל איברי הקבוצה.\\ $-5 $ גם הוא חסם מלרע של $A$, אך הפעם זהו מינימום משום שזהו חסם מלרע בתוך הקבוצה $A$. באופן דומה למקסימום, בתור מינימום, הוא גם חסם תחתון. \end{example}


שימו לב לשלילות הבאות:

$M$ אינו חסם מלעיל אם"ם קיים איבר $a>M$

$m$ אינו חסם מלרע אם"ם קיים איבר $a<M$

$M$ אינו חסם עליון אם"ם הוא אינו חסם מלעיל או שקיים חסם מלעיל הקטן ממש ממנו.

$m$ אינו חסם תחתון אם"ם הוא אינו חסם מלרע או שקיים חסם מלרע הגדול ממש ממנו.

\begin{remark} מאחת ההגדרות של $\mathbb{R} $ מקבלים שלכל $A\subseteq\mathbb{R}$ חסומה מלעיל (מלרע) קיים חסם עליון (תחתון). \end{remark}

\begin{thm} תהי $A\subseteq\mathbb{R}$ חסומה מלעיל אזי:

M חסם עליון של A אם"ם M חסם מלעיל של A וגם לכל $0<\epsilon\in\mathbb{R}$ קיים $a\in A$ כך ש $a>M-\epsilon$

m חסם תחתון של A אם"ם m חסם מלרע של A וגם לכל $0<\epsilon\in\mathbb{R}$ קיים $a\in A$ כך ש $a<m+\epsilon$

\end{thm} במילים: M חסם עליון אם הוא חסם מלעיל וגם אין חסם מלעיל הקטן ממנו. כלומר, כל מספר הקטן ממנו אינו חסם מלעיל. כלומר, אם נקטין את M בגודל כלשהו שאינו אפס נקבל מספר שאינו חסם מלעיל. מספר אינו חסם מלעיל אם"ם יש איבר בקבוצה הגדול ממנו. (ניסוח דומה עבור החסם התחתון.)

\begin{proof} נניח M חסם עליון. מתוך ההגדרה של חסם עליון נובע בפרט ש-M חסם מלעיל. נותר להוכיח כי $$\forall\epsilon >0\exists a\in A:a>M-\epsilon$$ נניח בשלילה כי קיים $\epsilon >0$ כל שלכל האיברים $a\in A$ מתקיים $a\leq M-\epsilon$.\\ לכן, לפי ההגדרה, $M-\epsilon$ הוא חסם מלעיל של הקבוצה. מכיוון שאפסילון גדול מאפס, $M-\epsilon$ הוא חסם מלעיל קטן ממש מהחסם העליון $M$, בסתירה לכך שהוא חסם המלעיל הקטן ביותר.

\end{thm}

<tex>קוד:סיום</tex> </latex2pdf>