קוד:נגזרת של הרכבת פונקציות (כלל שרשרת)
\begin{theorem} נניח $f:(a,b)\to (c,d) , g:(c,d)\to \mathbb{R} $ נסמן את $h=g\circ f $ כלומר $h(x)=g(f(x)) $ . אם $f$ דיפרנציאבילית ב- $x_0 $ ו- $g$ דיפרנציאבילית ב- $f(x_0) $ אזי $h$ דיפרנציאבילית ב- $x_0 $ ומתקיים: (הצורות שקולות)
$h'(x_0)=g'(f(x_0))\cdot f'(x_0) $
$\frac{dh}{dx} (x_0) = \frac{dg}{df} (f(x_0))\cdot \frac{df}{dx} (x_0) $
אם הכתיב האחרון נראה לכם מוזר ועושה לכם כאב ראש, אל תדאגו, זה בעיקר בשביל הפיזיקאים אבל אתן בכל זאת דוגמה:
אם נגדיר $g(u)=\sin u $ אבל $u(x)=x^2 $ אז הנגזרת של $h(x)=g(u(x))=\sin x^2 $ היא $\frac{dg}{du} (u(x))\cdot \frac{du}{dx} $ אבל $\frac{dg}{du} $ זה $\cos u $ ו- $\frac{du}{dx}=2x $ ולכן סך הכל נקבל $\cos u(x) \cdot 2x = \cos x^2 \cdot 2x $
\end{theorem}
\begin{proof} ידוע ש-
$f(x_0+t)=f(x_0)+f'(x_0) t + \epsilon_1(t)\cdot t \ \text{when }\epsilon_1(t)\underset{t\to 0}{\longrightarrow} 0 \\, g(y_0+s)=g(y_0)+g'(y_0) s + \epsilon_2(s)\cdot s\ \text{when } \epsilon_2(s) \underset{s\to 0} {\longrightarrow} 0 $ ולכן
$g(f(x_0)+t))=g(f(x_0)+f'(x_0) t + \epsilon_1(t)\cdot t)=g(f(x_0))+g'(f(x_0))(f'(x_0) t + \epsilon_1(t)\cdot t)+\epsilon_2 (f'(x_0) t + \epsilon_1 (t))\cdot (f'(x_0) t + \epsilon_1 (t))= \\ g(f(x_0))+g'(f(x_0))\cdot f'(x_0) \cdot t + o(t)_{t\to 0} \Rightarrow (g(f(x)))'(x_0)=g'(f(x_0))\cdot f'(x_0) $ \end{proof}