גלים עומדים במיתר
גל הינו תופעה נפוצה המתארת הפרעה המתפשטת במרחב. גלים קיימים ונחקרים בתחומים שונים בפיזיקה למשל, גלים אלקטרומגנטיים, גלי קול, גלי מים ועוד. במעבדה זו נחקור גלים עומדים במיתר, תופעה זו מתקבל מתוך תכונותיו הבסיסיות של הגל ההרמוני. במהלך הניסוי יומחש המושג "גלים עומדים" בעזרת צפייה בגלים במיתר, מדידה של נקודות הצומת וחישוב מהירות הגל.
רקע תיאורטי
באוויר, במוצק ובנוזל נוצרים גלים מכניים הודות לכוחות אלסטיים, היוצרים קשרים בין חלקי גוף שונים. בתהליך יצירת גלים בתווך מסויים כמו מים או מיתר משתתפים כוחות כבידה וכוחות מתיחות.
גל במיתר ניתן לתיאור כמו כל גל אחר בעזרת משוואת גלים:
[math]\displaystyle{ \ \frac{\partial^2 }{\partial t^2} \psi(t,\vec{r}) = v^2 \ \nabla ^2 \psi(t,\vec{r}) }[/math]
זוהי משוואה דיפרנציאלית , שבה:
- [math]\displaystyle{ \vec{r} }[/math] הוא המקום במרחב.
- [math]\displaystyle{ \ t }[/math] הוא הזמן.
- הפונקציה [math]\displaystyle{ \ \psi (t,\vec{r}) }[/math] היא פונקציית הגל, המתארת מהי משרעת הגל בכל נקודה ובכל זמן.
- [math]\displaystyle{ \ v }[/math] היא מהירות התקדמות הגל.
- [math]\displaystyle{ \ \nabla ^2 }[/math] הוא האופרטור לפלסיאן.
נחקור מיתר המתנודד ונקבל את משוואת הגלים עבורו בחד מימד.
נתון מיתר גמיש וגל עובר בו. נניח כי אמפליטודת הגל קטנה, הצפיפות [math]\displaystyle{ \rho }[/math], אורך המיתר [math]\displaystyle{ L }[/math] והמתיחות [math]\displaystyle{ T }[/math] (בשווי משקל). כעת נעוות את המיתר וניצור בו הפרעה, ראו איור 1. העיוות יהיה קטן כדי לא לשנות את המתיחות. נבחר קטע על המיתר ונתייחס רק אליו. קבענו כתנאי קודם שהמתיחות בשני הקצוות שווה והיא T. מתיחויות אלו אינן פועלות בכיוונים מנוגדים אלא בסטייה קטנה ([math]\displaystyle{ \alpha\ \ne\alpha^\prime }[/math]) ולכן נוכל לכתוב משוואה לסכום הכוחות על הקטע שלנו: .
כאשר מדובר על הפרעה מחזורית אנו מגדירים מאפיינים לתיאורו של הגל:
- [math]\displaystyle{ f }[/math], תדירות הגל - מספר המחזורים בשנייה, נמדדת ביחידות של הרץ ([math]\displaystyle{ Hz }[/math]).
- [math]\displaystyle{ \omega }[/math], תדירות זוויתית - נירמול תדירות הגל כך ש-[math]\displaystyle{ \omega = 2 \pi f }[/math]