88-112 לינארית 1 תיכוניסטים קיץ תשעא/מערך תרגול/4

מתוך Math-Wiki
הגרסה להדפסה אינה נתמכת עוד וייתכן שיש בה שגיאות תיצוג. נא לעדכן את הסימניות בדפדפן שלך ולהשתמש בפעולת ההדפסה הרגילה של הדפדפן במקום זה.

מרחבים וקטורים

דוגמא שכדאי שתהיה ברקע ּ[math]\displaystyle{ V=\mathbb{R}^{3}:=\{(x,y,z)\,|\, x,y,z,\in\mathbb{R}\} }[/math]

עם חיבור [math]\displaystyle{ (x_{1},y_{1},z_{1})+(x_{2},y_{2},z_{2})=(x_{1}+x_{2},y_{1}+y_{2},z_{1}+z_{2}) }[/math]

וכפל בסקלאר [math]\displaystyle{ \alpha\in\mathbb{R} , \alpha(x,y,z)=(\alpha z,\alpha y,\alpha z) }[/math] הוא מרחב וקטורי.

ההגדרה הפורמאלית מכלילה את הדוגמא.

הגדרה: מרחב וקטורי הוא רביעיה [math]\displaystyle{ (V,\mathbb{F},+,\cdot) }[/math], כאשר

  • [math]\displaystyle{ V }[/math] היא קבוצה המוגדרת בה פעולה בינארית של חיבור (+). כלומר [math]\displaystyle{ +:V\times V \to V }[/math]
  • [math]\displaystyle{ \mathbb{F} }[/math] הוא שדה. זכרו שבשדה גם מוגדרות פעולות חיבור וכפל, לא להתבלבל עם החיבור של [math]\displaystyle{ V }[/math] וכפל בסקלאר.
  • כפל בסקלאר ([math]\displaystyle{ \cdot }[/math]) היא פעולה המקשרת בין איברי V לאיברי [math]\displaystyle{ \mathbb{F} }[/math]. פורמאלית [math]\displaystyle{ \cdot : \mathbb{F}\times V \to V }[/math]

אקסיומות מרחב וקטורי:

  1. אקסיומות של החיבור ב [math]\displaystyle{ V }[/math]: לכל [math]\displaystyle{ v,w,u\in V }[/math] מתקיים
    1. מוגדרות: [math]\displaystyle{ v+w\in V }[/math] .
    2. קיבוץ: [math]\displaystyle{ v+(u+w)=(v+u)+w }[/math] .
    3. חילוף: [math]\displaystyle{ v+u=u+v }[/math] .
    4. איבר נטרלי: [math]\displaystyle{ \exists0\in V:\,\forall v\in V:0+v=v }[/math] .
    5. איבר נגדי: [math]\displaystyle{ \forall v\in V\,\exists(-v)\in V:\, v+(-v)=0 }[/math] .
  2. אקסיומות של כפל וחיבור של שדה: בהגדרת שדה
  3. אקסיומות כפל בסקלאר: לכל [math]\displaystyle{ v,u\in V,\alpha,\beta\in\mathbb{F} }[/math] מתקיים
    1. מוגדרות [math]\displaystyle{ \alpha v\in V }[/math]
    2. קיבוץ: [math]\displaystyle{ \alpha(\beta v)=(\alpha\beta)v }[/math]
    3. כפל ביחידה (של השדה): [math]\displaystyle{ 1_{\mathbb{F}}\cdot v=v }[/math]
    4. פילוג:
      1. [math]\displaystyle{ \alpha(v+u)=\alpha v+\alpha u }[/math]
      2. [math]\displaystyle{ (\alpha+\beta)v=\alpha v+\beta v }[/math]

טרמינולוגיה: אומרים ש [math]\displaystyle{ V }[/math] מרחב וקטורי מעל [math]\displaystyle{ \mathbb{F} }[/math].

איברי [math]\displaystyle{ V }[/math] נקראים וקטורים. איברי [math]\displaystyle{ \mathbb{F} }[/math] נקראים סקלארים.


תכונות בסיסיות:

.1 [math]\displaystyle{ (-1_{F})v=(-v) }[/math]

.2 [math]\displaystyle{ 0_{F}v=0_{V} }[/math]

דוגמאות

1. [math]\displaystyle{ V=\mathbb{F}^{n}:=\{(a_{1,}\dots,a_{n})|\, a_{i}\in\mathbb{F}\} }[/math] מעל [math]\displaystyle{ \mathbb{F} }[/math]

עם חיבור [math]\displaystyle{ (a_{1,}\dots,a_{n})+(b_{1,}\dots,b_{n})=(a_{1}+b_{1},\dots,a_{n}+b_{n}) }[/math]

וכפל בסקלאר [math]\displaystyle{ \alpha(a_{1,}\dots,a_{n})=(\alpha a_{1,}\dots,\alpha a_{n}) }[/math]

2. מרחב המטריצות [math]\displaystyle{ \mathbb{F}^{m\times n} }[/math] מעל שדה [math]\displaystyle{ \mathbb{F} }[/math] עם חיבור וכפל בסקלאר של מטריצות שהגדרנו כבר.

3. מרחב הפולינומים מעל שדה מדרגה קטנה שווה ל n. פורמאלית [math]\displaystyle{ \mathbb{F}_{n}[x]=\{a_{0}+a_{1}x+\cdots a_{n}x^{n}|\,\forall i \, a_{i}\in\mathbb{F}\} }[/math] מעל שדה [math]\displaystyle{ \mathbb{F} }[/math]

עם פעולת חיבור פולינומים וכפל בסקלאר טבעיים.

4. מרחב הפולינומים [math]\displaystyle{ \mathbb{F}[x]=\{a_{0}+a_{1}x+\cdots a_{n}x^{n}|\, a_{i}\in\mathbb{F},n\in\mathbb{N}\} }[/math] עם חיבור וכפל בסקלאר מוכרים.

5. [math]\displaystyle{ V=\mathbb{R} }[/math] הוא מרחב וקטורי מעל [math]\displaystyle{ \mathbb{F}=\mathbb{Q} }[/math] עם חיבור וכפל "רגילים".

6. [math]\displaystyle{ V=\mathbb{C}^{3} }[/math] הוא מרחב וקטורי מעל [math]\displaystyle{ \mathbb{F}=\mathbb{R} }[/math].

הערה: [math]\displaystyle{ V=\mathbb{R}^{3} }[/math] הוא אינו מרחב וקטורי מעל [math]\displaystyle{ \mathbb{F}=\mathbb{C} }[/math] (עם חיבור וכפל בסקלאר סטנדרטים) כי [math]\displaystyle{ i\in \mathbb{F},(1,1,1)\in \mathbb{R}^3 }[/math] והכפל בניהם צריך להיות שייך ל [math]\displaystyle{ V }[/math] אבל [math]\displaystyle{ i\cdot (1,1,1)=(i,i,i)\not\in \mathbb{R}^3 }[/math]

תתי מרחבים

הגדרה יהיה [math]\displaystyle{ V }[/math] מרחב וקטורי מעל [math]\displaystyle{ \mathbb{F} }[/math]. תת קבוצה [math]\displaystyle{ W\subseteq V }[/math] יקרא תת מרחב אם הוא מרחב וקטורי בפני עצמו ביחס לפעולות V. סימון [math]\displaystyle{ W\leq V }[/math]

הערה: כדי לבדוק אם [math]\displaystyle{ W\subseteq V }[/math] הוא תת מרחב מספיק לבדוק

  1. לכל [math]\displaystyle{ w,u\in W }[/math] מתקיים
  2. מוגדרות: [math]\displaystyle{ u+w\in W }[/math] .
  3. איבר נטרלי: 0 של [math]\displaystyle{ V }[/math] נמצא ב-[math]\displaystyle{ W }[/math]
  4. אקסיומות כפל בסקלאר: לכל [math]\displaystyle{ w\in W,\alpha\in\mathbb{F} }[/math] מתקיים
    1. מוגדרות [math]\displaystyle{ \alpha w\in W }[/math]

את שאר האקסיומות [math]\displaystyle{ W }[/math] יורש מ [math]\displaystyle{ V }[/math] כתת קבוצה.

הערה: ניתן לרכז את הבדיקות הנ"ל מספיק לבדוק

  1. [math]\displaystyle{ W\not=\emptyset }[/math]
  2. שלכל [math]\displaystyle{ w,u\in W,\,\alpha\in\mathbb{F} }[/math] מתקיים [math]\displaystyle{ \alpha u+w\in W }[/math].

אבחנה: [math]\displaystyle{ \{0\},V\subseteq V }[/math] תמיד תתי מרחבים ונקראים תתי המרחבים הטריוואלים.

דוגמאות ודוגמאות נגדיות

1. המישור האוקלידי [math]\displaystyle{ V=\mathbb{R}^{2} }[/math] מעל [math]\displaystyle{ \mathbb{F}=\mathbb{R} }[/math]

א. [math]\displaystyle{ W=\{(x,y)\,|\, x,y\geq 0\} }[/math] (הרביע החיובי) אינו תת מרחב כי [math]\displaystyle{ -1(1,1)=(-1,-1)\not\notin W }[/math]

ב. [math]\displaystyle{ W=\{(x,y)\,|\, x,y\geq0\:\text{ or }x,y\leq0\} }[/math] (הרביע החיובי והשלילי) אינו תת מרחב כי [math]\displaystyle{ \underset{\in W}{(2,4)}+\underset{\in W}{(-3,-3)}=(-1,1)\notin W }[/math]

ג. [math]\displaystyle{ W=\{(x,y)|\, y=3x\} }[/math] קו ישר העובר בראשית הוא כן תת מרחב. נוכיח את זה בסעיף הבא:

2. תהא [math]\displaystyle{ A\in \mathbb{F}^{m\times n} }[/math] מטריצה ונסתכל על אוסף הפתרונות למערכת ההומוגנית [math]\displaystyle{ Ax=0 }[/math]. פורמאלית [math]\displaystyle{ W=\{v\in \mathbb{F}^n \, :\, Av=0\} \subseteq \mathbb{F}^n }[/math].

טענה [math]\displaystyle{ W\leq \mathbb{F}^n }[/math] תת מרחב

הוכחה: נשתמש בקריטריון המקוצר

  1. ברור ש [math]\displaystyle{ W }[/math] לא ריקה כי [math]\displaystyle{ 0\in W }[/math]
  2. לכל [math]\displaystyle{ v_1,v_2\in W,\,\alpha\in\mathbb{F} }[/math] רוצים להראות כי [math]\displaystyle{ \alpha v_1 +v_2 \in W }[/math]. לפי הגדרה צריך להראות כי [math]\displaystyle{ A(\alpha v_1 +v_2)=0 }[/math]. ואכן, [math]\displaystyle{ A(\alpha v_1 +v_2)=\alpha Av_1+Av_2=\alpha 0+0 =0+0=0 }[/math].


3. מרחב המטריצות [math]\displaystyle{ V=\mathbb{F}^{n\times n} }[/math] מעל [math]\displaystyle{ \mathbb{F} }[/math] א. המטריצות מסוג [math]\displaystyle{ W=\{\left(\begin{array}{cccc} a & 0 & \cdots & 0\\ 0 & 0 & & 0\\ \vdots & & \ddots & 0\\ 0 & 0 & \cdots & 0 \end{array}\right)|a\in\mathbb{F}\} }[/math] הן תת מרחב.

נוכיח :

  1. ברור כי [math]\displaystyle{ W }[/math] אינה ריקה כי מטריצת האפס שייך ל [math]\displaystyle{ W }[/math]
  2. לכל [math]\displaystyle{ A_1,A_2\in W,\,\alpha\in\mathbb{F} }[/math] רוצים להראות ש [math]\displaystyle{ \alpha A_1 +A_2 \in W }[/math] כלומר להראות שהמטריצה [math]\displaystyle{ \alpha A_1 +A_2 }[/math] כולה אפסים פרט (אולי) למקום [math]\displaystyle{ 1,1 }[/math] וזה אכן כך בגלל שזאת הצורה של [math]\displaystyle{ A_1,A_2 }[/math]

ב. המטריצות הסימטריות [math]\displaystyle{ W=\{A\in V\,|\, A^{t}=A\} }[/math] והמטריצות האנטי-סימטריות [math]\displaystyle{ W=\{A\in V\,|\, A^{t}=-A\} }[/math] שתיהן תתי מרחב.

הוכחה (עבור הסימטריות)

  1. ברור כי [math]\displaystyle{ W }[/math] אינה ריקה כי מטריצת האפס שייך ל [math]\displaystyle{ W }[/math]
  2. לכל [math]\displaystyle{ A_1,A_2\in W,\,\alpha\in\mathbb{F} }[/math] רוצים להראות ש [math]\displaystyle{ \alpha A_1 +A_2 \in W }[/math] כלומר להראות שהמטריצה [math]\displaystyle{ \alpha A_1 +A_2 }[/math] סימטרית. נתון כי [math]\displaystyle{ A_1^t=A_1,A_2^t=A_2 }[/math]. כעת מחוקי שיחלוף

נקבל כי [math]\displaystyle{ (\alpha A_1 +A_2)^t=\alpha A_1^t +A_2^t=\alpha A_1 +A_2 }[/math].

ג.המטריצות הסימטריות איחוד עם המטריצות האנטי סימטריות [math]\displaystyle{ W=\{A\in V\,|\, A^{t}=A \text{ or } A^{t}=-A\} }[/math] אינו תת מרחב כי המטריצות [math]\displaystyle{ A_1 = \left(\begin{array}{ccccc} 0 & 1 & & 0\cdots & 0\\ 1 & 0 & & 0 & 0\\ \vdots & & \ddots & 0 & 0\\ 0 & 0 & \cdots & 0 & 0 \end{array} \right) A_2= \left(\begin{array}{ccccc} 0 & -1 & & 0\cdots & 0\\ 1 & 0 & & 0 & 0\\ \vdots & & \ddots & 0 & 0\\ 0 & 0 & \cdots & 0 & 0 \end{array} \right) }[/math] שייכות ל [math]\displaystyle{ W }[/math] אבל החיבור שלהם לא.

ד. המטריצות משולשיות/אלכסוניות/סקלאריות הן תת מרחב.

ה. המטריצות [math]\displaystyle{ W=\{A\in V\,|\, tr(A)=0\} }[/math] הן תת מרחב

הוכחה

  1. ברור כי [math]\displaystyle{ W }[/math] אינה ריקה כי מטריצת האפס שייך ל [math]\displaystyle{ W }[/math]
  2. לכל [math]\displaystyle{ A_1,A_2\in W,\,\alpha\in\mathbb{F} }[/math] רוצים להראות ש [math]\displaystyle{ \alpha A_1 +A_2 \in W }[/math] כלומר להראות שעקבה של המטריצה [math]\displaystyle{ \alpha A_1 +A_2 }[/math] שווה 0. נתון כי [math]\displaystyle{ tr(A_1)=tr(A_2)=0 }[/math]. כעת מחוקי עקבה

נקבל כי [math]\displaystyle{ tr(\alpha A_1 +A_2)=\alpha tr(A_1) +tr(A_2)=\alpha 0 +0 = 0 }[/math].


4. [math]\displaystyle{ V=\mathbb{R}_{2}[x] }[/math] מרחב הפלינומים מדרגה 2 מעל [math]\displaystyle{ \mathbb{R} }[/math] .

א. [math]\displaystyle{ W=\mathbb{R}_{1}[x]=\{a+bx|\, a,b\in\mathbb{R}\} }[/math] הינו תת מרחב כי באופן כללי [math]\displaystyle{ \mathbb{R}_{n}[x] }[/math] הוא מרחב וקטורי (והפעולות מוגדרות באופן זהה לכל המרחבים).

ב. [math]\displaystyle{ W=\{a+bx|\,0\not=b\in\mathbb{R}\} }[/math] הפולינומים מדרגה 1 בדיוק אינו תת מרחב. כי פולינום האפס שהוא האיבר הנטרלי ב [math]\displaystyle{ V }[/math] לא נמצא ב[math]\displaystyle{ W }[/math] .

חיתוך תתי מרחבים

משפט: יהי [math]\displaystyle{ V }[/math] מרחב וקטורי מעל [math]\displaystyle{ \mathbb{F} }[/math] . יהיו [math]\displaystyle{ W_1,W_2\leq V }[/math] תתי מרחבים. אזי חיתוך תתי המרחבים [math]\displaystyle{ W_1\cap W_1:=\{v\in V:\, v\in W_1\land v\in W_2\} }[/math] הינו תת מרחב.

דוגמא 1

1. יהי [math]\displaystyle{ V = \mathbb{R}^4 }[/math]. נגדיר שתי תת מרחבים [math]\displaystyle{ W_1=\{(x_1,x_2,x_3,x_4)\in V :\, x_1+x_2+x_3+x_4 =0\} }[/math]

[math]\displaystyle{ W_2=\{(x_1,x_2,x_3,x_4)\in V :\, x_1+x_2+x_3+2x_4 =0 \land -x_1+x_2+x_3+x_4 =0 \} }[/math]

נמצא את [math]\displaystyle{ W_1\cap W_2 }[/math]

נשים לב שנוכל לאפיין את תתי המרחבים בצורה הבאה:

[math]\displaystyle{ W_1=\{v\in V :\, A_1v =0\} }[/math]

[math]\displaystyle{ W_2=\{v\in V :\, A_2v =0 \} }[/math]

כאשר [math]\displaystyle{ A_1 = \begin{pmatrix} 1 &1 &1 &1\end{pmatrix}, A_2 = \begin{pmatrix} 1 &1 &1 &2 \\ -1 &1 &1 &1 \end{pmatrix} }[/math]

כמו שראינו אלו תת מרחבים. כעת [math]\displaystyle{ W_1\cap W_2= \begin{pmatrix} A_1 &A_2\end{pmatrix} v =0 }[/math]

ולכן צריך בסה"כ למצוא פתרון למערכת לא הומוגנית. נעשה זאת [math]\displaystyle{ \begin{pmatrix} 1 &1 &1 &1 \\ 1 &1 &1 &2 \\ -1 &1 &1 &1 \end{pmatrix} \to \\ \begin{pmatrix} 1 &1 &1 &1 \\ 0 &0 &0 &1 \\ 0 &2 &2 &2 \end{pmatrix} \to \begin{pmatrix} 1 &1 &1 &1 \\ 0 &1 &1 &1\\ 0 &0 &0 &1 \end{pmatrix} \to \begin{pmatrix} 1 &1 &1 &0 \\ 0 &1 &1 &0\\ 0 &0 &0 &1 \end{pmatrix} \to \begin{pmatrix} 1 &0 &0 &0 \\ 0 &1 &1 &0\\ 0 &0 &0 &1 \end{pmatrix} }[/math]

התשובה הסופית

[math]\displaystyle{ W_1\cap W_2 = \{\left( \begin{array}{c} 0 \\ -t\\ t\\ 0 \end{array}\right) : \, t\in \mathbb{R} \} }[/math]

דוגמא 2

יהי [math]\displaystyle{ V = \mathbb{R}^3 }[/math]. נגדיר שתי תת מרחבים

[math]\displaystyle{ W_1=\{\alpha_1\begin{pmatrix}1\\ 1\\ 1 \end{pmatrix} + +\alpha_2\begin{pmatrix} 1\\ -1\\ 1 \end{pmatrix} :\, \alpha_1,\alpha_2 \in \mathbb{R} \} }[/math]

[math]\displaystyle{ W_2=\{\alpha_1\begin{pmatrix} 1\\ 1\\ -1 \end{pmatrix} +\alpha_2\begin{pmatrix} -1\\ 1\\ 1 \end{pmatrix} :\, \alpha_1,\alpha_2 \in \mathbb{R} \} }[/math]

נמצא את החיתוך בניהם

צריך למצוא סקלארים [math]\displaystyle{ \alpha_1,\alpha_2,\alpha_3, \alpha_4\in \mathbb{R} }[/math] המקיימים

[math]\displaystyle{ \alpha_1\begin{pmatrix} 1\\ 1 \\-1\end{pmatrix} +\alpha_2\begin{pmatrix} -1\\ 1\\ 1 \end{pmatrix} = \alpha_3\begin{pmatrix}1\\ 1\\ 1 \end{pmatrix} +\alpha_4\begin{pmatrix} 1\\ -1\\ 1 \end{pmatrix} }[/math]

שימו לב שאם מצאנו ארבעה סקלארים שמקימים את המשוואה לעיל אז אנחנו יודעים שהוקטור הזה במשוואה. עוד שימו לב שאם יודעים שהשיוויון מתקיים מספיק לדעת את [math]\displaystyle{ \alpha_1,\alpha_2 }[/math] או את [math]\displaystyle{ \alpha_3,\alpha_4 }[/math] כדי לחשב את הוקטור עצמו (כי שני אגפי השיוויון שווים).

בעצם, זה שוב לפתור מערכת משוואות כאשר הנעלמים הם [math]\displaystyle{ \alpha_1,\alpha_2,\alpha_3, \alpha_4 }[/math]. הנה המערכת (אחרי שנעביר אגף):

[math]\displaystyle{ \begin{pmatrix} 1 &-1 &-1 & -1\\ 1 &1 &-1 &1\\ -1 &1 &-1 & -1 \end{pmatrix} \cdot \begin{pmatrix} \alpha_1\\ \alpha_2\\ \alpha_3\\ \alpha_4 \end{pmatrix} = 0 }[/math]

נדרג ונמשיך

[math]\displaystyle{ \begin{pmatrix} 1 &-1 &-1 & -1\\ 1 &1 &-1 &1\\ -1 &1 &-1 & -1 \end{pmatrix} \to \begin{pmatrix} 1 &-1 &-1 & -1\\ 0 &2 & 0 & 2\\ 0 &0 &-2 & -2 \end{pmatrix} \to \\ \begin{pmatrix} 1 &-1 &-1 & -1\\ 0 &1 & 0 & 1\\ 0 &0 &-1 & -1 \end{pmatrix} \to \begin{pmatrix} 1 &-1 &0 &0\\ 0 &1 & 0 & 1\\ 0 &0 &-1 & -1 \end{pmatrix} \to \begin{pmatrix} 1 &0 &0 &1\\ 0 &1 & 0 & 1\\ 0 &0 &-1 & -1 \end{pmatrix} }[/math] קיבלנו כי התנאי היחידי המתקיים בין [math]\displaystyle{ \alpha_3,\alpha_4 }[/math] הוא [math]\displaystyle{ \alpha_3= -\alpha_4 }[/math]. ובמקרה שהתנאי מתקיים יש פתרון למערכת המשוואות.

לכן התשובה הסופית

[math]\displaystyle{ W_1\cap W_2 = \{\alpha\begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix} -\alpha\begin{pmatrix} 1\\ -1\\ 1 \end{pmatrix} :\, \alpha \in \mathbb{R} \} }[/math]

סכום תתי מרחבים

תרגיל: איחוד אינו תת מרחב

סכום ישר