88-611 אנליזה 1 למורים סמסטר א תשעו/מערכי תרגול/שיעור 1
חזקות ושורשים
1) אם a הוא מספר כלשהוא ו-n מספר טבעי, אזי a בחזקת n מוגדר באופן הבא: [math]\displaystyle{ a^{n}=a\cdot a\cdots a }[/math], מספר a נקרא בסיס החזקה, מספר n נקרא מעריך החזקה.
2) ניקח מספר ממשי חיובי x וניקח חזקה [math]\displaystyle{ \frac{1}{n} }[/math] כאשר n הוא מספר טבעי.נגדיר את x בחזקת [math]\displaystyle{ \frac{1}{n} }[/math] להיות השורש ה-n-י של x: [math]\displaystyle{ y=x^{\frac{1}{n}}=\sqrt[n]{x} }[/math]
3) באופן כללי נגדיר חזקה רציונאלית באופן הבא: [math]\displaystyle{ x^{\frac{p}{q}}=\left(\sqrt[q]{x}\right)^{p} }[/math]
חוקי חזקות
- לכל x מתקיים [math]\displaystyle{ 1^{x}=1 }[/math]
- לכל x מתקיים [math]\displaystyle{ x^{0}=1 }[/math] ובפרט [math]\displaystyle{ 0^{0}=1 }[/math]
- לכל x שונה מאפס מתקיים [math]\displaystyle{ 0^{x}=0 }[/math]
- [math]\displaystyle{ x^{q}x^{b}=x^{a+b} }[/math]
- [math]\displaystyle{ x^{-a}=\frac{1}{x^{a}} }[/math]
- [math]\displaystyle{ \frac{x^{a}}{x^{b}}=a^{a-b} }[/math]
הגדרה: פונקציה מעריכית היא פונקציה מהצורה [math]\displaystyle{ y=a^{x} }[/math] כאשר בסיס a הוא מספר קבוע.
תרגיל: מצא את הפתרונות של המשוואה [math]\displaystyle{ 2\left(\frac{4^{x}+1}{2^{x}}\right)^{2}-7\left(\frac{4^{-x}+1}{2^{-x}}\right)+5=0 }[/math]
פתרון: ראשית נשים לב לכך ש:[math]\displaystyle{ \frac{4^{x}+1}{2^{x}}=\frac{4^{-x}+1}{2^{-x}}=2^{x}+\frac{1}{2^{x}} }[/math] ולכן נסמן [math]\displaystyle{ t=2^{x}+\frac{1}{2^{x}} }[/math] נציב את t במשוואה ונקבל [math]\displaystyle{ 2t^{2}-7t+5=0 }[/math] עם הפתרונות [math]\displaystyle{ t=1,\frac{1}{2} }[/math], לכן עלינו לפתור שתי משוואות:
1) [math]\displaystyle{ 2^{x}+\frac{1}{2^{x}}=1 }[/math] נעשה מכנה משותף ונקבל [math]\displaystyle{ \left(2^{x}\right)^{2}-2^{x}+1=0 }[/math] נסמן ב-[math]\displaystyle{ s=2^{x} }[/math] ונקבל משוואה [math]\displaystyle{ s^{2}-s+1=0 }[/math] קל לראות שלמשוואה הזאת אין פתרון.
2) [math]\displaystyle{ 2^{x}+\frac{1}{2^{x}}=\frac{5}{2} }[/math] שוב נעשה מכנה משותף ונקבל [math]\displaystyle{ 2s^{2}-5s+2=0 }[/math] לאחר שנציב [math]\displaystyle{ s=2^{x} }[/math], פתרונות למשוואה הזאת הם [math]\displaystyle{ s=2^{x} }[/math] ולכן פתרון כללי הוא [math]\displaystyle{ x_{1}=1 x_{2}=-1 }[/math]
הגדרת הלוגריתם
לוגריתם של מספר x לפי בסיס a הוא b אם b הוא מעריך החזקה שבסיסה a וערכה x, כלומר [math]\displaystyle{ a^{x}=x\Leftrightarrow log_{a}x=b }[/math].
תכונות
אם [math]\displaystyle{ log_{a}x=b }[/math] אזי:
1) [math]\displaystyle{ 1\neq a\gt 0 }[/math]
2) [math]\displaystyle{ x\gt 0 }[/math]
3) b מספר כלשהוא.
4) [math]\displaystyle{ a^{log_{a}x}=b }[/math]
הגדרה: פונקציה לוגריתמית היא פונקציה מהצורה [math]\displaystyle{ y=log_{a}x }[/math] כאשר a הוא מספר קבוע חיובי ושונה מ-1 ותחום ההגדרה שלה הוא [math]\displaystyle{ x\gt 0 }[/math].
חוקי לוגריתמים
1) [math]\displaystyle{ log_{a}\left(xy\right)=log_{a}x+log_{a}y }[/math]
2) [math]\displaystyle{ log_{a}\left(\frac{x}{y}\right)=log_{a}x-log_{a}y }[/math]
3) [math]\displaystyle{ log_{a}x^{n}=nlog_{a}x }[/math]
4) [math]\displaystyle{ log_{m}x=\frac{log_{a}x}{log_{a}m} }[/math]
5) [math]\displaystyle{ formula }[/math] וגם [math]\displaystyle{ log_{a}\left(a\right)=1 }[/math]
הערה: מקרה פרטי החשוב ביותר בו נתענין בקורס הוא [math]\displaystyle{ log_{e}x=lnx }[/math] כאשר [math]\displaystyle{ e\approx2.51 }[/math]
תרגיל: פתרו את [math]\displaystyle{ e\approx2.51 }[/math] פתרון: נשתמש בחוקי הלוגריתמים [math]\displaystyle{ ln\left(\left(1+x\right)\left(1-x\right)\right)=0 }[/math] ואז נקבל [math]\displaystyle{ ln\left(1-x^{2}\right)=0 }[/math] ואז לפי ההגדרה של הלוגריתם מקבלים [math]\displaystyle{ 1-x^{2}=1 }[/math] u> ולכן תושב סופי היא היא x שווה אפס.
ערך מוחלט ואי שוויון
הגדרה: ערך מוחלט של מספר הוא המרחק שלו מנקודה אפס ומסמנים אותו בצורה הבאה: [math]\displaystyle{ \mid x\mid=\begin{cases} x & x\geq0\\ -x & x\leq0 \end{cases} }[/math]
מרחק בין שתי נקודות מוגדר להיות [math]\displaystyle{ \mid x-y\mid }[/math]
תכונות של ערך מוחלט
1) לכל x מתקיים [math]\displaystyle{ \mid x\mid\geq0 }[/math]
2) [math]\displaystyle{ \mid x\mid=0 }[/math] אם ורק אם [math]\displaystyle{ x=0 }[/math]
3) [math]\displaystyle{ \mid xy\mid=\mid x\mid y\mid }[/math]
4) [math]\displaystyle{ \left(\mid x\mid\right)^{2}=x^{2} }[/math]
5) [math]\displaystyle{ x\leq\mid x\mid }[/math]
6) אי שוויון המשולש: [math]\displaystyle{ \mid x+y\mid\leq\mid x\mid+\mid y\mid }[/math]
תכונות של אי שוויונים
- [math]\displaystyle{ x\leq y\Leftrightarrow-x\geq-y }[/math]
- נניח ש-x,y אי שליליים אזי [math]\displaystyle{ x\leq y\Leftrightarrow x^{2}\leq y^{2} }[/math]
- נניח ש-x,y אי שליליים אזי [math]\displaystyle{ x\leq y\Leftrightarrow\frac{1}{x}\geq\frac{1}{y} }[/math]