88-611 אנליזה 1 למורים סמסטר א תשעו/מערכי תרגול/שיעור 2
סדרות
הגדרה
סדרה של מספרים ממשיים היא פונקציה [math]\displaystyle{ f:\mathbb{N\rightarrow\mathbb{R}} }[/math] שלכל [math]\displaystyle{ n\in\mathbb{N} }[/math] מתאימה מספר ממשי [math]\displaystyle{ a_{n}=f\left(n\right) }[/math] שנקרא האיבר ה-n-י של הסדרה.
סדרה היא רשימה אינסופית מסודרת של מספרים ממשיים: [math]\displaystyle{ a_{1},a_{2},... }[/math] שנסמנה [math]\displaystyle{ a_{1},a_{2},... }[/math], והמספר ה-n נקרא האינדקס של האיבר [math]\displaystyle{ a_{n} }[/math].
[math]\displaystyle{ a_{n} }[/math] נקרא האיבר הכללי של הסדרה ואם הוא נתון על ידי נוסחה אלגברית אזי הביטוי [math]\displaystyle{ a_{n} }[/math] נקרא הנוסחה האלגברית של הסדרה.
דוגמאות
1) הסדרה [math]\displaystyle{ 1,\frac{1}{2},\frac{1}{3}.... }[/math] נקראת הסדרה ההרמונית. נוסחת האיבר הכללי שלה היא שלה [math]\displaystyle{ a_{n}=\frac{1}{n} }[/math].