88-611 אנליזה 1 למורים סמסטר א תשעו/מערכי תרגול/שיעור 2

מתוך Math-Wiki

סדרות

הגדרה

סדרה של מספרים ממשיים היא פונקציה [math]\displaystyle{ f:\mathbb{N\rightarrow\mathbb{R}} }[/math] שלכל [math]\displaystyle{ n\in\mathbb{N} }[/math] מתאימה מספר ממשי [math]\displaystyle{ a_{n}=f\left(n\right) }[/math] שנקרא האיבר ה-n-י של הסדרה.

סדרה היא רשימה אינסופית מסודרת של מספרים ממשיים: [math]\displaystyle{ a_{1},a_{2},... }[/math] שנסמנה [math]\displaystyle{ a_{1},a_{2},... }[/math], והמספר ה-n נקרא האינדקס של האיבר [math]\displaystyle{ a_{n} }[/math].

[math]\displaystyle{ a_{n} }[/math] נקרא האיבר הכללי של הסדרה ואם הוא נתון על ידי נוסחה אלגברית אזי הביטוי [math]\displaystyle{ a_{n} }[/math] נקרא הנוסחה האלגברית של הסדרה.

דוגמאות

1) הסדרה [math]\displaystyle{ 1,\frac{1}{2},\frac{1}{3}.... }[/math] נקראת הסדרה ההרמונית. נוסחת האיבר הכללי שלה היא שלה [math]\displaystyle{ a_{n}=\frac{1}{n} }[/math].

2) אם [math]\displaystyle{ s\in\mathbb{R} }[/math] הסדרה [math]\displaystyle{ s,s^{2},s^{3},.... }[/math] נקראת הסדרה ההנדסית עם בסיס s ואיברה הכללי הוא [math]\displaystyle{ a_{n}=s^{n} }[/math].

3) הסדרה s,s,s,s... נקראת הסדרה הקבועה ונסמנה הסדרה הקבועה שערכה s ונסמנה [math]\displaystyle{ a_{n}=s }[/math].

הגדרה (סביבת ה-אפסילון של הנקודה)

יהי [math]\displaystyle{ x_{0}\in\mathbb{R} }[/math] ויהי [math]\displaystyle{ \varepsilon\gt 0 }[/math], סביבת ה-אפסילון של [math]\displaystyle{ x_{0} }[/math] שמסומנת ב- [math]\displaystyle{ B_{\varepsilon}\left(x_{0}\right) }[/math] ומוגדרת ע"י [math]\displaystyle{ B_{\varepsilon}\left(x_{0}\right)=\left\{ x\in\mathbb{R}:\mid x-x_{0}\mid\lt \varepsilon\right\} }[/math]. כדאי לחשוב על [math]\displaystyle{ B_{\varepsilon}\left(x_{0}\right) }[/math] כקבוצת הנקודות שמרחקם מ-[math]\displaystyle{ x_{0} }[/math] קטן מ-[math]\displaystyle{ \varepsilon }[/math]. [math]\displaystyle{ x\in B_{\varepsilon}\left(x_{0}\right) }[/math] אם ורק אם [math]\displaystyle{ x\in\left(x_{0}-\varepsilon,x_{0}+\varepsilon\right) }[/math].