נקודת פיתול
הגדרה
תהי [math]\displaystyle{ f }[/math] פונקציה ממשית הגזירה בנקודה [math]\displaystyle{ a }[/math] .
[math]\displaystyle{ a }[/math] נקראת נקודת פיתול אם קיימת סביבה שלה כך שמצד אחד של [math]\displaystyle{ a }[/math] הפונקציה גדולה או שווה למשיק ל- [math]\displaystyle{ a }[/math], ובצד השני הפונקציה קטנה או שווה לו.
מציאת נקודות פיתול
נקודות בהן הנגזרת מתאפסת הן חשודות לפיתול, ויש לסווג אותן.
משפט: תהי [math]\displaystyle{ f }[/math] גזירה פעמיים בסביבת [math]\displaystyle{ a }[/math] כך שמצד אחד של [math]\displaystyle{ a }[/math] הנגזרת השנייה אי-שלילית ובצד השני אי-חיובית, אזי [math]\displaystyle{ a }[/math] נקודת פיתול של [math]\displaystyle{ f }[/math].
הוכחה:
לפי טיילור מתקיים:
- [math]\displaystyle{ f(x)=f(a)+f'(a)\cdot (x-a)+\frac{f''(c)}{2}\cdot (x-a)^2 }[/math].
ההפרש בין הפונקציה למשיק בנקודה [math]\displaystyle{ a }[/math] הנו
- [math]\displaystyle{ f(x)-\Big(f(a)+f'(a)\cdot (x-a)\Big)=\frac{f''(c)}{2}\cdot (x-a)^2 }[/math]
כיון שהנקודה [math]\displaystyle{ c }[/math] נמצאת בין [math]\displaystyle{ x }[/math] ו- [math]\displaystyle{ ש }[/math], קל להסיק מהנתונים כי ההפרש בין הפונקציה למשיק אי-שלילי מצד אחד, ואי-חיובי מהצד השני ולכן [math]\displaystyle{ a }[/math] הנה נקודת פיתול כפי שרצינו. [math]\displaystyle{ \blacksquare }[/math]