88-112 לינארית 1 תיכוניסטים קיץ תשעא/מערך תרגול/11

מתוך Math-Wiki
הגרסה להדפסה אינה נתמכת עוד וייתכן שיש בה שגיאות תיצוג. נא לעדכן את הסימניות בדפדפן שלך ולהשתמש בפעולת ההדפסה הרגילה של הדפדפן במקום זה.

חזרה למערכי התרגול

דטרמיננטות

הגדרה הדטרמיננטה של מטריצה ריבועית [math]\displaystyle{ A\in F^{n\times n} }[/math] היא סקלר [math]\displaystyle{ det(A)=|A|\in F }[/math] המחושב מסכומים של מכפלות של אברי המטריצה.

חישוב דטרמיננטה של מטריצות קטנות

  • הדטרמיננטה של מטריצה מסדר 1 [math]\displaystyle{ A=(\alpha)\in F^{1\times 1} }[/math] היא הערך היחיד במטריצה [math]\displaystyle{ det(A)=\alpha }[/math].
  • הדטרמיננטה של מטריצה [math]\displaystyle{ A=\pmatrix{a&b\\ c&d} \in F^{2\times 2} }[/math] היא [math]\displaystyle{ det(A)=ad-bc }[/math].

למשל: [math]\displaystyle{ det\pmatrix{1&2\\ 3&4} = 1\cdot 4-2\cdot 3=-2 }[/math].

חישוב לפי נוסחת לפלס (מינורים)

סימון עבור מטריצה [math]\displaystyle{ A\in F^{n\times n} }[/math] נסמן ב [math]\displaystyle{ M_{ij} }[/math] את המטריצה מגודל [math]\displaystyle{ n-1 \times n-1 }[/math] המתקבלת מ[math]\displaystyle{ A }[/math] ע"י מחיקת השורה ה[math]\displaystyle{ i }[/math] והעמודה ה[math]\displaystyle{ j }[/math]. זה נקרא המינור ה[math]\displaystyle{ ij }[/math] של המטריצה.

דוגמא: עבור [math]\displaystyle{ A=\pmatrix{1&2&3\\ 4&5&6\\ 7&8&9} }[/math]למשל [math]\displaystyle{ M_{12}=\pmatrix{4&6\\ 7&9} }[/math] [math]\displaystyle{ M_{23}=\pmatrix{1&2\\ 7&8} }[/math]

אפשר למצוא את הדטרמיננטה בעזרת הדטרמיננטות של המינורים (לפי שורה או לפי עמודה), וכך באינדוקציה למצוא דטורמיננטה של כל מטריצה.

מציאת הדטרמיננטה ע"י מינורים עם פיתוח לפי השורה ה[math]\displaystyle{ i }[/math]:

[math]\displaystyle{ |A|=\sum_{j=1}^n (-1)^{i+j}a_{ij}|M_{ij}| }[/math]

מציאת הדטרמיננטה ע"י מינורים עם פיתוח לפי העמודה ה[math]\displaystyle{ j }[/math]:

[math]\displaystyle{ |A|=\sum_{i=1}^n (-1)^{i+j}a_{ij}|M_{ij}| }[/math]

לדוגמא: [math]\displaystyle{ A=\pmatrix{1&2&3\\ 4&5&6\\ 7&8&9} }[/math]נפתח לפי השורה הראשונה: [math]\displaystyle{ |A|=(-1)^{1+1}\cdot 1\cdot \begin{vmatrix}5&6\\ 8&9 \end{vmatrix}+(-1)^{1+2}\cdot 2\cdot \begin{vmatrix} 4&6\\ 7&9 \end{vmatrix}+(-1)^{1+3}\cdot 3 \cdot \begin{vmatrix} 4&5\\ 7&8 \end{vmatrix}=0 }[/math]

נפתח גם לפי העמודה השנייה: [math]\displaystyle{ |A|=(-1)^{1+2}\cdot 2\cdot \begin{vmatrix}4&6\\ 7&9 \end{vmatrix}+(-1)^{2+2}\cdot 5\cdot \begin{vmatrix} 1&3\\ 7&9 \end{vmatrix}+(-1)^{2+3}\cdot 8 \cdot \begin{vmatrix} 1&3\\ 4&6 \end{vmatrix}=0 }[/math]

תכונות של הדטרמיננטה

1. כפליות [math]\displaystyle{ |AB|=|A||B| }[/math].

2. בפרט [math]\displaystyle{ |A^k|=|A|^k }[/math].

3. [math]\displaystyle{ |A^t|=|A| }[/math].

4. אם המטריצה משולשית אז הדטרמיננטה= מכפלת אברי האלכסון (להדגים?).

5. אם [math]\displaystyle{ A }[/math] הפיכה אז [math]\displaystyle{ |A^{-1}|=|A|^{-1} }[/math].

6. [math]\displaystyle{ A }[/math] הפיכה אם"ם [math]\displaystyle{ |A|\neq 0 }[/math].


למשל המטריצה [math]\displaystyle{ A=\pmatrix{1&2&3\\ 4&5&6\\ 7&8&9} }[/math]איננה הפיכה כי חישבנו שהדטרמיננטה היא אפס.

שימו לב שאין בהכרח קשר בין [math]\displaystyle{ |A+B| }[/math] לבין [math]\displaystyle{ |A|+|B| }[/math]. (דוגמא?)

תרגיל

נתונות מטריצות [math]\displaystyle{ A,B\in F^{n \times n} }[/math] כך ש [math]\displaystyle{ |A|=2, |B|=-1 }[/math]. חשבו את [math]\displaystyle{ |(AB^{-1})^t(BA)^{-2}| }[/math].

פתרון

[math]\displaystyle{ |(AB^{-1})^t(BA)^{-2}|=|(AB^{-1})^t|\cdot |(BA)^{-2}|=|(AB^{-1})|\cdot |(BA)|^{-2}|=|A||B|^{-1}|B|^{-2}|A|^{-2}=-\frac{1}{2} }[/math]

תרגיל

תהי [math]\displaystyle{ B\in F^{3\times 3} }[/math]עם דטרמיננטה [math]\displaystyle{ |B|=-1 }[/math]. מצא את [math]\displaystyle{ |2B| }[/math].

פתרון

[math]\displaystyle{ |2B|=|2I\cdot B|=|\pmatrix{2&0&0\\ 0&2&0\\ 0&0&2}|\cdot |B|=2^3 \cdot (-1) }[/math]

בהכללה: [math]\displaystyle{ |\alpha A|=\alpha^n |A| }[/math].

תרגיל

1. תהי [math]\displaystyle{ A }[/math]מטריצה ממשית והפיכה מסדר [math]\displaystyle{ n }[/math]המקיימת [math]\displaystyle{ A^4+2A=0 }[/math]. חשבו את [math]\displaystyle{ |A| }[/math].

2. נניח [math]\displaystyle{ A }[/math]מקיימת [math]\displaystyle{ A^n+a_{n-1}A^{n-1}+\dots +a_1A+I=0 }[/math], הוכיחו כי היא הפיכה.

3.תהיינה [math]\displaystyle{ A,B }[/math] ריבועיות מסדר [math]\displaystyle{ n }[/math]אי-זוגי מעל שדה ממאפיין שונה מ2. נתון ש[math]\displaystyle{ AB+BA=0 }[/math], הוכיחו כי אחת מהמטריצות איננה הפיכה.

פתרון:

1. נעביר אגפים ונקבל [math]\displaystyle{ A^4=-2A }[/math], נקח דטרמיננטה [math]\displaystyle{ |A|^4 =(-2)^n|A| }[/math] ולכן [math]\displaystyle{ |A|=(-2)^{\frac{n}{3}} }[/math].

2. נעביר אגפים ונסדר [math]\displaystyle{ A \left( A^{n-1}+a_{n-1}A^n-2}+\dots +a_2A+a_1I)=-I }[/math], נקח דטרמיננטה [math]\displaystyle{ |A||something|=|-I|=(-1)^n }[/math]. בפרט, [math]\displaystyle{ |A|\neq 0 }[/math]ולכן [math]\displaystyle{ A }[/math]הפיכה.

3. נעביר אגפים [math]\displaystyle{ AB=-BA }[/math] ונקח דטרמיננטה [math]\displaystyle{ |A||B|=(-1)^n|B||A| }[/math]. נתון ש[math]\displaystyle{ n }[/math] אי-זוגי ולכן [math]\displaystyle{ |A||B|=-|A||B| }[/math]. זה מכריח ש[math]\displaystyle{ |A||B|=0 }[/math] ולכן או ש [math]\displaystyle{ |A|=0 }[/math]ואז [math]\displaystyle{ A }[/math]לא הפיכה, או ש[math]\displaystyle{ |B|=0 }[/math] ואז [math]\displaystyle{ B }[/math]לא הפיכה.


שיטת הדירוג

טענה תהי [math]\displaystyle{ B }[/math]מטריצה המתקבלת ממטריצה [math]\displaystyle{ A }[/math] ע" פעולת שורה, אזי:

1. אם [math]\displaystyle{ B }[/math] התקבלה ע"י כפל של אחת השורות ב[math]\displaystyle{ \alpha }[/math] אזי [math]\displaystyle{ |A|=\frac{1}{\alpha}|B| }[/math].

2. אם [math]\displaystyle{ B }[/math] התקבלה ע"י החלפת שתי שורות אזי [math]\displaystyle{ |A|=-|B| }[/math].

3. אם [math]\displaystyle{ B }[/math] התקבלה ע"י הוספת כפולה של שורה אחת לשורה אחרת אזי [math]\displaystyle{ |A|=|B| }[/math].

אם כן, נוכל לחשב דטרמיננטה ע"י דירוג המטריצה עד לצורה משולשית עליונה, ולעקוב אחר השינויים בדטרמיננטה.

דוגמא [math]\displaystyle{ \begin{vmatrix}2&6&16\\ -3&-6&18\\ 5&12&35\end{vmatrix}=2\cdot (-3)\begin{vmatrix}1&3&8\\ 1&2&-6\\ 5&12&35 \end{vmatrix}=-6\cdot \begin{vmatrix}1&3&8\\0&-1&-14\\0&-3&-5\end{vmatrix}=-6\cdot \begin{vmatrix}1&3&8\\0&-1&-14\\0&0&37\end{vmatrix}=-6\cdot 1\cdot (-1)\cdot 37=222 }[/math]

דוגמא

חשב את [math]\displaystyle{ |A|=\begin{vmatrix}a&1&1&\dots&1\\1&a&1&\dots &1 \\ 1&1&a&\dots &1\\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1&1&1& \dots & a\end{vmatrix} }[/math]

פתרון ראשית נסכום את כל השורות לשורה הראשונה ונקבל [math]\displaystyle{ |A|== \begin{vmatrix}a+n-1&a+n-1& \dots &a+n-1\\ 1&a&\dots &1\\1&1&\dots &1\\ \vdots &\vdots & \dots & \vdots \\ 1&1& \dots & a \end{vmatrix} }[/math] נחלק את השורה הראשונה ב[math]\displaystyle{ a+n-1 }[/math] ונקבל: [math]\displaystyle{ |A|=(a+n-1)\begin{vmatrix}1&1&\dots &1\\1&a&\dots &1\\1&1&\ddots&1\\ \vdots &\vdots &{}& \vdots\\ 1&1&\dots & a\end{vmatrix} }[/math]

כעת נחסר מכל שורה את השורה הראשונה ונקבל [math]\displaystyle{ |A|=(a+n-1)\begin{vmatrix}1&1&\dots &1\\0&a-1&\dots &0\\0&0&\ddots &0\\0&0&\dots &a-1\end{vmatrix}=(a+n-1)1(a-1)^{n-1} }[/math]

המטריצה הנילוות (המצורפת)

הגדרה תהי [math]\displaystyle{ A\in F^{n\times n} }[/math], המטריצה נילווית שלה היא המטריצה [math]\displaystyle{ adj(A)=\left( (-1)^{i+j}|M_{ji}| \right)_{ij} }[/math].

(שימו לב להחלפה בין [math]\displaystyle{ i }[/math] ו [math]\displaystyle{ j\lt /math !) דוגמא ==המשפט המרכזי== \lt math\gt A(adjA)=(adjA)A=|A|I }[/math]

תוצאה: אם [math]\displaystyle{ A }[/math] הפיכה אז [math]\displaystyle{ A^{-1}=\frac{adjA}{|A|} }[/math].

תרגיל

תהי [math]\displaystyle{ A\in F^{n\times n} }[/math] מטריצה. 1. הוכח כי [math]\displaystyle{ |adjA|=|A|^{n-1} }[/math]. 2. נניח כי המטריצה הפיכה, חשבו את [math]\displaystyle{ adj \left( adjA \right) }[/math].

פתרון

1. ראשית נניח כי [math]\displaystyle{ |A|\neq 0 }[/math], אזי נפעיל דטרמיננטה על שני האגפים: [math]\displaystyle{ |AadjA|=||A|I| }[/math] ונקבל [math]\displaystyle{ |A||adjA|=|A|^n }[/math] נחלק בדטרמיננטה ואז [math]\displaystyle{ |adjA|=|A|^{n-1} }[/math] כדרוש.

כעת נניח [math]\displaystyle{ |A|=0 }[/math] וצריך להוכיח כי [math]\displaystyle{ |adjA|=0 }[/math]. לפי המשפט [math]\displaystyle{ (adjA)A=|A|I=0 }[/math]

אם [math]\displaystyle{ A=0 }[/math] אז ברור ש [math]\displaystyle{ adjA=0 }[/math] לפי ההגדרה. אחרת, יש איזשהי עמודה של [math]\displaystyle{ A }[/math]שהיא לא אפס, [math]\displaystyle{ C_k(A) }[/math]. ואז [math]\displaystyle{ adjA\cdot C_k(A)=0 }[/math] מה שאומר ש[math]\displaystyle{ adjA }[/math] לא הפיכה ואז [math]\displaystyle{ |adjA|=0 }[/math].

2. נשתמש במשפט עבור המטריצה [math]\displaystyle{ B=adjA }[/math], אזי [math]\displaystyle{ (adjA)\cdot (adj(adjA)=|adjA|I }[/math]. ולפי הסעיף הקודם נקבל ש[math]\displaystyle{ adj(adjA)=adjA^{-1}|A|^{n-1} }[/math]. ומכיוון ו[math]\displaystyle{ adjA^{-1}=\frac{A}{|A|} }[/math] אז [math]\displaystyle{ adj(adjA)=A|A|^{n-2} }[/math].

תרגיל

תהי [math]\displaystyle{ A\in \mathbb{Q}^{n\times n} }[/math] ונתון שהיא הפיכה ב[math]\displaystyle{ \mathbb{R}^{n\times n} }[/math] (כלומר שיש מטריצה ממשית [math]\displaystyle{ B }[/math] כך ש [math]\displaystyle{ AB=BA=I }[/math]). הוכיחו כי היא הפיכה ב[math]\displaystyle{ \mathbb{Q}^{n\times n} }[/math].

פתרון: מכיוון שמטריצה הפיכה היא יחידה, לא יתכן שב[math]\displaystyle{ \mathbb{Q}^{n\times n} }[/math] יש מטריצה הופכית אחרת. כך שבעצם יש להראות ש[math]\displaystyle{ A^{-1} }[/math] הממשית היא בעצם עם איברים ב[math]\displaystyle{ \mathbb{Q} }[/math].

לפי המשפט [math]\displaystyle{ A^{-1}=\frac{adjA}{|A|} }[/math]. [math]\displaystyle{ |A|\in \mathbb{Q} }[/math] כי הדטרמיננטה זה סכומים של מכפלות של איברי [math]\displaystyle{ A }[/math] שהם רציונליים. [math]\displaystyle{ adjA\in \mathbb{Q}^{n\times n} }[/math] כי האיברים הם [math]\displaystyle{ (-1)^{i+j}|M_{ji}| }[/math] שהם גם רציונלים (כמו קודם). סה"כ קיבלנו [math]\displaystyle{ A^{-1}\in \mathbb{Q}^{n\times n} }[/math].