תרגול 9 תשעז

מתוך Math-Wiki
גרסה מ־13:39, 3 בינואר 2017 מאת Relweiz (שיחה | תרומות) (יצירת דף עם התוכן "===תרגיל=== יהיו <math>A=\{1,2\}, B=\{3,4,5\}</math>. נגדיר את היחס: <math>R=\{(1,3),(2,4)\}</math>. בדוק האם: א. <math>R^{-1}\circ...")
(הבדל) → הגרסה הקודמת | הגרסה האחרונה (הבדל) | הגרסה הבאה ← (הבדל)

תרגיל

יהיו [math]\displaystyle{ A=\{1,2\}, B=\{3,4,5\} }[/math]. נגדיר את היחס: [math]\displaystyle{ R=\{(1,3),(2,4)\} }[/math]. בדוק האם:

א. [math]\displaystyle{ R^{-1}\circ R=I_A }[/math]

ב. [math]\displaystyle{ R\circ R^{-1}=I_B }[/math]

תכונות של יחסים על קבוצה

הגדרה: יחס R על קבוצה A פירושו [math]\displaystyle{ R\subseteq A\times A }[/math]

תהי קבוצה A ויחס R עליה אזי

  1. R נקרא רפלקסיבי אם כל איבר מקיים את היחס עם עצמו ( מתקיים [math]\displaystyle{ \forall a\in A:(a,a)\in R }[/math])
  2. R נקרא סימטרי אם aRb גורר שגם bRa (מתקיים [math]\displaystyle{ \forall a,b\in A:[(a,b)\in R \rightarrow (b,a)\in R] }[/math])
  3. R נקרא טרנזיטיבי אם יחס בין ראשון לשני, ויחס בין השני לשלישי גורר יחס בין הראשון לשלישי (מתקיים [math]\displaystyle{ \forall a,b,c\in A:[((a,b)\in R) \and ((b,c)\in R) \rightarrow ((a,c)\in R)] }[/math])
  4. R נקרא אנטי סימטרי (חלש) אם aRb וגם bRa גורר כי a=b (מתקיים [math]\displaystyle{ \forall a,b\in A:[(a,b)\in R \and (b,a)\in R \rightarrow a=b] }[/math] ובאופן שקול: [math]\displaystyle{ \forall a\neq b\in A: \lnot (aRb\land bRa) }[/math])

דוגמאות:

  • יחס 'שיוויון' הינו רפלקסיבי, סימטרי וטרנזיטיבי
  • יחס 'קטן שווה' הינו רפלקסיבי, טרנזיטיבי ואנטי סימטרי
  • יחס 'קטן ממש' הינו טרנזיטיבי ואנטי-סימטרי
  • יחס 'שיוויון מודולו n' הינו רפלקסיבי, סימטרי וטרנזיטיבי
  • יחס 'הכלה' הינו רפלקסיבי, טרנזיטיבי ואנטי-סימטרי
  • יחס 'a מחלק את b' הינו רפלקסיבי וטרנזיטיבי
  • יחס 'אדם x שמע על אדם y' הינו רפלקסיבי

הערה: יחס יכול להיות גם סימטרי וגם אנטי סימטרי. וכמו כן הוא יכול להיות לא זה ולא זה! לדוגמא: [math]\displaystyle{ A=\{ 1,2,3\} , R=\{ (1,1)\} , S=\{ (1,2),(2,1),(3,2)\} }[/math] ואז R גם וגם, S לא ולא.