תרגול 6 תשעז

מתוך Math-Wiki
הגרסה להדפסה אינה נתמכת עוד וייתכן שיש בה שגיאות תיצוג. נא לעדכן את הסימניות בדפדפן שלך ולהשתמש בפעולת ההדפסה הרגילה של הדפדפן במקום זה.

חזרה לדף מערכי התרגול.

המשך קבוצות

תרגיל

הוכח כי [math]\displaystyle{ A\cap (B/C)=(A\cap B) / (A\cap C) }[/math]

פתרון

דרך גרירות לוגיות:

[math]\displaystyle{ x\in A\cap (B/C)\iff (x\in A) \and [(x\in B) \and (x\notin C)]\iff [(x\in A) \and (x\in B) \and (x\notin C)] \or [(x\in A) \and (x\in B) \and (x\notin A)] }[/math]


בצד הימני הוספנו סתירה בעזרת הקשר "או" ולכן נשארנו עם ביטוי שקול. כעת נשתמש בחוק הפילוג של הלוגיקה:


[math]\displaystyle{ \iff [(x\in A) \and (x\in B)]\and [(x\notin C)\or(x\notin A)]\iff [(x\in A) \and (x\in B)]\and \neg [(x\in C)\and(x\in A)] }[/math]


וזה בדיוק מה שרצינו.


דרך הכלה דו כיוונית:

([math]\displaystyle{ \subseteq }[/math]) נניח [math]\displaystyle{ x\in A\cap(B\backslash C) }[/math] אזי

[math]\displaystyle{ x\in A \land x\in B \land x\not\in C \Leftarrow }[/math] [math]\displaystyle{ x\in A\cap B \land x\not\in A\cap C \Leftarrow }[/math] [math]\displaystyle{ x\in (A\cap B) \backslash (A\cap C) }[/math]

([math]\displaystyle{ \supseteq }[/math]) נניח [math]\displaystyle{ x\in (A\cap B) \backslash (A\cap C) }[/math] אזי

[math]\displaystyle{ x\in A\cap B \land x\not\in A\cap C \Leftarrow }[/math] [math]\displaystyle{ x\in A \land x\in B \land x\not\in C \Leftarrow }[/math] (כי אם [math]\displaystyle{ x\in C }[/math] אזי [math]\displaystyle{ x\in A\cap C }[/math] סתירה) [math]\displaystyle{ x\in A\cap(B\backslash C)\Leftarrow }[/math]

משלים

הגדרה: תהי קבוצה U, ונביט בתת קבוצה שלה A. ניתן להגדיר את המשלים של A כאוסף האיברים בU שאינם בA (כלומר ההפרש [math]\displaystyle{ U\setminus A }[/math]), מסומן [math]\displaystyle{ A^c }[/math]. לא ניתן לדבר על משלים אוניברסאלי ללא U מכיוון שאין קבוצה המכילה את כל הדברים בעולם (אחרת נגיע לסתירות כמו פרדוקס ראסל).

תכונות בסיסיות:

  • [math]\displaystyle{ A\cup A^c = U }[/math]
  • [math]\displaystyle{ \emptyset^c = U }[/math]
  • [math]\displaystyle{ U^c = \emptyset }[/math]
  • [math]\displaystyle{ (A^c)^c = A }[/math]

על המשלימים מתקיימים חוקי דה מורגן (הנובעים ישירות מחוקי דה מורגן בלוגיקה):

  • [math]\displaystyle{ (A\cap B)^c = A^c \cup B^c }[/math]
  • [math]\displaystyle{ (A\cup B)^c = A^c \cap B^c }[/math]

הערה: באופן כללי מתקיים

  • [math]\displaystyle{ (\cap _{i\in I} A_i)^c = \cup _{i\in I} A_{i}^c }[/math]
  • [math]\displaystyle{ (\cup _{i\in I} A_i)^c = \cap _{i\in I} A_{i}^c }[/math]


הגדרה: תהי קבוצה A. נגדיר את קבוצת החזקה של A בתור אוסף כל תתי הקבוצות של A. מסומן [math]\displaystyle{ P(A)=\{X:X\subseteq A\} }[/math]

דוגמא:

[math]\displaystyle{ A=\{1,2\} }[/math] אזי [math]\displaystyle{ P(A)=\{\{\},\{1\},\{2\},\{1,2\}\} }[/math].

האם אתם יכולים למנות כמה איברים יש בקבוצת החזקה?

תרגיל ממבחן

יהיו A,B,C קבוצות. הוכיחו/הפריכו:

א. אם [math]\displaystyle{ A \not\subseteq B \cap C }[/math] אזי [math]\displaystyle{ (A/B)\cap(A/C)\neq \phi }[/math]

ב. אם [math]\displaystyle{ A\subseteq B }[/math] אזי [math]\displaystyle{ A\cup(B/A)=B }[/math]

ג. אם [math]\displaystyle{ A\cap B=\phi }[/math] אזי [math]\displaystyle{ P(A)\cap P(B) = \{\phi\} }[/math]


פתרון

א. הפרכה: [math]\displaystyle{ A=\{1,2\},B=\{1\},C=\{2\} }[/math]. אזי ברור שA איננה מוכלת בחיתוך של B וC אבל [math]\displaystyle{ (A/B)\cap(A/C)=\{2\}\cap\{1\}=\phi }[/math]


ב. נתון שלכל [math]\displaystyle{ a\in A }[/math] מתקיים [math]\displaystyle{ a \in B }[/math]. אזי [math]\displaystyle{ x\in [A\cup(B/A)] \iff (x\in A) \or [(x\in B)\and (x\notin A)] \iff [(x\in A) \or (x\in B)] \and [(x \in A)\or (x\notin A)] }[/math]


כעת, הצד הימני הוא טאוטולוגיה וניתן להסיר אותו. מכיוון שנתון [math]\displaystyle{ (x\in A)\rightarrow (x\in B) }[/math] ניתן להסיק בקלות ש[math]\displaystyle{ (x\in A)\or (x\in B) \iff (x\in B) }[/math] כפי שרצינו.

דרך נוספת: נגדיר את B להיות הקבוצה האוניברסאלית [math]\displaystyle{ U:=B }[/math] ואז צריך להוכיח כי [math]\displaystyle{ A\cap A^c =U }[/math] וזה אכן נכון!


ג. נניח בשלילה ש[math]\displaystyle{ P(A)\cap P(B)\neq \{\phi\} }[/math]. מכיוון שהקבוצה הריקה שייכת לכל קבוצת חזקה החיתוך אינו ריק. לכן לפי הנחת השלילה קיימת קבוצה לא ריקה [math]\displaystyle{ \phi \not=C }[/math] השייכת לחיתוך [math]\displaystyle{ P(A)\cap P(B) }[/math]. קבוצות החזקה הן אוסף תתי הקבוצות, ולכן [math]\displaystyle{ C\subseteq A \and C\subseteq B }[/math]. מכיוון שC אינה ריקה קיים בה איבר [math]\displaystyle{ \exists c\in C }[/math] וקל מאד לראות ש[math]\displaystyle{ (c\in A)\and (c\in B) }[/math] ולכן c מוכל בחיתוך בסתירה לכך שהחיתוך ריק.