משתמש:אור שחף/133 - הרצאה/20.2.11
אינטגרציה
הגדרה שגוייה: אינטגרל הוא לא השטח שמתחת לגרף. עם זאת, האינטגרל נותן אינדיקציה טובה לשטח זה.
דוגמת חישוב (ידני) של שטח שמתחת לגרף
נתון הגרף (1). נחשב את השטח שמתחת לו. לצורך כך נחשב תחילה את השטח של המלבנים הגדולים והמלבנים הקטנים (החוסמים והחסומים).
ברור שסכום שטחי המלבנים גדול משטח הגרף. נחלק את הקטע [math]\displaystyle{ [0,1] }[/math]:
(באופן כללי [math]\displaystyle{ x_k=k/n }[/math])
מעל כל תת קטע קטן [math]\displaystyle{ [x_{k-1},x_k] }[/math] נבנה "מלבן חוסם" שגובהו [math]\displaystyle{ \left({k\over n}\right)^2=x_k^2 }[/math]. ביחד מלבנים אלו יוצרים שטח חוסם [math]\displaystyle{ \overline S:=\sum_{k=1}^n\frac1n\left({k\over n}\right)^2=\frac1{n^3}\sum_{k=1}^nk^2=\frac{n(n+1)(2n+1)}{6n^3} }[/math]
כמו כן, מעל כל קטע קטן [math]\displaystyle{ [x_{k-1},x_k] }[/math] נבנה "מלבן חסום" שגובהו [math]\displaystyle{ \left({k-1\over n}\right)^2=x_{k-1}^2 }[/math] ביחד מלבנים אלה מהווים שטח חסום [math]\displaystyle{ \underline S:=\frac1n\sum_{k=1}^n\left({k-1\over n}\right)^2=\frac1{n^3}\sum_{k=1}^n(k-1)^2=\frac1{n^3}\sum_{k=1}^{n-1}k^2=\frac{n(n+1)(2n+1)}{6n^3} }[/math]
כעת אם A מציין את השטח שמתחת לגרף בוודאי ש-[math]\displaystyle{ \underline S\le A\le\overline S }[/math], ז"א [math]\displaystyle{ \frac{n(n+1)(2n+1)}{6n^3}\le A\le\frac{n(n+1)(2n+1)}{6n^3} }[/math]. הדבר נכון לכל [math]\displaystyle{ n\in\mathbb N }[/math] ולכן נוכל להשאיף את [math]\displaystyle{ n\to\infty }[/math] ולקבל [math]\displaystyle{ \frac13\le A\le\frac13 }[/math], לכן [math]\displaystyle{ A=\frac13 }[/math]. [math]\displaystyle{ \blacksquare }[/math]
הגדרה: תהי [math]\displaystyle{ f(x) }[/math] מוגדרת בקטע I. נאמר שהפונקציה [math]\displaystyle{ F(x) }[/math] קדומה ל-f ב-I אם [math]\displaystyle{ \forall x\in I:\ F'(x)=f(x) }[/math].
דוגמה: אם [math]\displaystyle{ f(x)=x^2 }[/math] אז [math]\displaystyle{ F(x)=\frac{x^3}3 }[/math].
משפט 0
אם [math]\displaystyle{ F(x) }[/math] ו-[math]\displaystyle{ G(x) }[/math] קדומות ל-[math]\displaystyle{ f(x) }[/math] בקטע I אז קיים קבוע c כך ש-[math]\displaystyle{ F(x)=G(x)+c }[/math]
הוכחה
נגדיר [math]\displaystyle{ H(x)=F(x)-G(x) }[/math] ולכן [math]\displaystyle{ \forall x\in I:\ H'(x)=F'(x)-G'(x)=f(x)-f(x)=0 }[/math]. לפי תוצאה ממשפט לגרנג' [math]\displaystyle{ F(x)-G(x)=H(x)=c\implies F(x)=G(x)+c }[/math]. [math]\displaystyle{ \blacksquare }[/math]
הגדרה: תהי [math]\displaystyle{ f(x)\ge0 }[/math] רציפה בקטע [math]\displaystyle{ [a,b] }[/math]. נסמן ב-[math]\displaystyle{ \int\limits_a^b f(x)dx }[/math] את השטח שמתחת לגרף.
המשפט היסודי של חשבון אינטגרלי (בצורה אינטואיטיבית)
תהי [math]\displaystyle{ f(x)\ge0 }[/math] מוגדרת ורציפה ב-[math]\displaystyle{ [a,b] }[/math].
- לכל [math]\displaystyle{ x\in[a,b] }[/math] נגדיר [math]\displaystyle{ A(x)=\int\limits_a^x f(t)dt }[/math] אזי [math]\displaystyle{ \forall x\in[a,b]:\ f(x)=A'(x) }[/math].
- אם [math]\displaystyle{ F(x) }[/math] קדומה ל-[math]\displaystyle{ f(x) }[/math] ב-[math]\displaystyle{ [a,b] }[/math] אז [math]\displaystyle{ \int\limits_a^bf(t)dt=F(b)-F(a) }[/math].
הוכחה
- גרף (3). רואים ש-[math]\displaystyle{ A(a)=0 }[/math] וננסה להוכיח ש-[math]\displaystyle{ A(b)=\int\limits_a^bf(t)dt }[/math]. יהי x נתון. כעת לפי ההגדרה [math]\displaystyle{ A'(x)=\lim_{\Delta x\to0}\frac{A(x+\Delta x)-A(x)}{\Delta x} }[/math]. בציור: [math]\displaystyle{ A(x+\Delta x)-A(x) }[/math] = שטח הארובה, [math]\displaystyle{ \Delta x }[/math] = בסיס הארובה, לכן [math]\displaystyle{ \frac{A(x+\Delta x)-A(x)}{\Delta x} }[/math] = הגובה הממוצע של הארובה. לכן [math]\displaystyle{ A'(x) }[/math] = הגובה הממוצע כאשר [math]\displaystyle{ \Delta x\to0 }[/math] =[math]\displaystyle{ f(x) }[/math]. [math]\displaystyle{ \blacksquare }[/math]
- נתונה פונקציה קדומה [math]\displaystyle{ F(x) }[/math]. מחלק 1 ידוע גם ש-[math]\displaystyle{ A(x) }[/math] פונקציה קדומה. לפי משפט 0 יש קבוע c כך ש-[math]\displaystyle{ F(x)=A(x)+c }[/math]. לכן [math]\displaystyle{ F(b)-F(a)=A(b)+c-(\underbrace{A(a)}_{=0}+c)=A(b)=\int\limits_a^bf(x)dx }[/math]. [math]\displaystyle{ \blacksquare }[/math]
האינטגרל לפי דרבו
הקדמה - הגדרות
תהי [math]\displaystyle{ f(x) }[/math] מוגדרת וחסומה ע"י [math]\displaystyle{ m:=\inf f(x) }[/math] ו- [math]\displaystyle{ M:=\sup f(x) }[/math] בקטע [math]\displaystyle{ [a,b] }[/math]. נגדיר את התנודה של f ע"י [math]\displaystyle{ \Omega=M-m }[/math]. כעת נגדיר חלוקה P של [math]\displaystyle{ [a,b] }[/math]:
עוד נגדיר לכל [math]\displaystyle{ k }[/math] את אורך תת קטע מספר k להיות [math]\displaystyle{ \Delta x_k=x_k-x_{k-1} }[/math] ואת הפרמטר של P להיות [math]\displaystyle{ \lambda(P):=\max_{k=1}^n\Delta x_k }[/math].
לכל k כך ש-[math]\displaystyle{ 1\le k\le n }[/math] נגדיר [math]\displaystyle{ M_k:=\sup\{f(x):\ x_{k-1}\le x\le x_k\} }[/math] וכן [math]\displaystyle{ m_k:=\inf\{f(x):\ x_{k-1}\le x\le x_k\} }[/math].
גרף (4).
בהתאם לכך נגדיר:
- שטח חוסם - הסכום העליון: [math]\displaystyle{ \overline S(f,P)=\sum_{k=1}^n M_k\Delta x_k }[/math]
- שטח חסום - הסכום התחתון: [math]\displaystyle{ \underline S(A,P)=\sum_{k=1}^n m_k\Delta x_k }[/math]
משפט 1
בסימונים הנ"ל, עבור כל חלוקה P מתקיים [math]\displaystyle{ m(b-a)\le\underline S(f,P)\le\overline S(f,P)\le M(b-a) }[/math].
הוכחה
[math]\displaystyle{ \sum_{k=1}^n\Delta x_k }[/math] = סכום כל הרווחים בין n נקודות החלוקה = b-a | [math]\displaystyle{ }[/math] | [math]\displaystyle{ \sum_{k=1}^n m\Delta x_k }[/math] | [math]\displaystyle{ = }[/math] | [math]\displaystyle{ m(b-a) }[/math] | [math]\displaystyle{ }[/math] | |
לכל k מתקיים [math]\displaystyle{ m\le m_k }[/math]. | [math]\displaystyle{ }[/math] | [math]\displaystyle{ \sum_{k=1}^n m_k\Delta x_k=\underline S(f,P) }[/math] | [math]\displaystyle{ \le }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | |
[math]\displaystyle{ }[/math] | [math]\displaystyle{ \sum_{k=1}^n M_k \Delta x_k=\overline S(f,P) }[/math] | [math]\displaystyle{ \le }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | ||
[math]\displaystyle{ }[/math] | [math]\displaystyle{ \sum_{k=1}^n M\Delta x_k }[/math] | [math]\displaystyle{ \le }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | ||
[math]\displaystyle{ }[/math] | [math]\displaystyle{ M(b-a) }[/math] | [math]\displaystyle{ = }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] |
[math]\displaystyle{ \blacksquare }[/math]
נשים לב כי לפי משפט 1 המספרים [math]\displaystyle{ \overline S(f,P),\underline S(f,P) }[/math] חסומים מלעיל ומלרע באופן ב"ת (בלתי תלוי) ב-P (אבל בוודאי תלוי ב-f).
לכן מוגדרים היטב ה"אינטגרל העליון" [math]\displaystyle{ \overline{\int}_a^b f(x)dx:=\inf_P \overline S(f,P) }[/math] ו"האינטגרל התחתון" [math]\displaystyle{ \underline\int_a^b f(x)dx:=\sup_P \underline S(f,P) }[/math].
הגדרת האינטגרל לפי דרבו
תהי [math]\displaystyle{ f(x) }[/math] מוגדרת וחסומה ב-[math]\displaystyle{ [a,b] }[/math]. נאמר ש-f אינטגרבילית לפי דרבו ב-[math]\displaystyle{ [a,b] }[/math] אם [math]\displaystyle{ \underline\int_a^b f(x)dx=\overline{\int}_a^b f(x)dx }[/math] ואם הם שווים אז נגדיר [math]\displaystyle{ \int\limits_a^b f(x)dx }[/math] להיות הערך המשותף של [math]\displaystyle{ \underline\int f }[/math] ו-[math]\displaystyle{ \overline{\int} f }[/math].
דוגמה
בקטע [math]\displaystyle{ [a,b] }[/math] כלשהו נגדיר את פונקצית דיריכלה [math]\displaystyle{ D(x)=\begin{cases}q&x\in\mathbb Q\\0&x\not\in\mathbb Q\end{cases} }[/math]. נקח חלוקה כלשהי ל-[math]\displaystyle{ [a,b] }[/math]: [math]\displaystyle{ a=x_0\lt x_1\lt \dots\lt x_n=b }[/math].
לכל k מתקיים [math]\displaystyle{ M_k=\sup\{f(x):\ x_{k-1}\le x\le x_k\}=1 }[/math] וכן [math]\displaystyle{ m_k=\inf\{f(x):\ x_{k-1}\le x\le x_k\}=0 }[/math]. לכן [math]\displaystyle{ \overline S(f,P)=\sum_{k=1}^n M_k\Delta x_k=\sum_{k=1}^n 1\Delta x_k=b-a }[/math] ואילו [math]\displaystyle{ \underline S(f,P)=\sum_{k=1}^n m_k\Delta x_k=\sum_{k=1}^n 0\Delta x_k=0 }[/math].
מכאן [math]\displaystyle{ \underline\int_a^b f(x)dx=\sup_P \underline S(f,P)=0 }[/math] ו-[math]\displaystyle{ \overline{\int}_a^b f(x)dx=\inf_P \overline S(f,P)=b-a }[/math]. הם לא שווים ולכן f לא אינטגרבילית. [math]\displaystyle{ \blacksquare }[/math]
הגדרה: תהי P חלוקה של קטע [math]\displaystyle{ [a,b] }[/math]. חלוקה Q של [math]\displaystyle{ [a,b] }[/math] נקראת עידון או העדנה של P אם Q מכילה את כל נקודות החלוקה של P ועוד נקודות.
משפט 2
תהי [math]\displaystyle{ f(x) }[/math] מוגדרת וחסומה ב-[math]\displaystyle{ [a,b] }[/math]. תהי P חלוקה של [math]\displaystyle{ [a,b] }[/math] ו-Q עידון של P ע"י הוספת r נקודות. אז
[math]\displaystyle{ 0\le\overline S(f,P)-\overline S(f,Q)\le r\lambda(P)\Omega }[/math]
[math]\displaystyle{ 0\le\underline S(f,Q)-\underline S(f,P)\le r\lambda(P)\Omega }[/math]
(נזכיר ש-[math]\displaystyle{ \lambda(P)=\max_{1\le k\le n}\Delta x_k }[/math] ו-[math]\displaystyle{ \Omega=\sup_{x\in[a,b]} f(x)-\inf_{x\in[a,b]} f(x) }[/math])
כלומר, הסכום העליון יורד והסכום התחתון עולה ע"י עידון אבל השינוי בהם קטן מ-[math]\displaystyle{ r\lambda(P)\Omega }[/math].
הוכחה
מקרה ראשון: [math]\displaystyle{ r=1 }[/math]. ז"א Q מתקבלת מ-P ע"י הוספת נקודה אחת [math]\displaystyle{ x_i' }[/math] כך ש-[math]\displaystyle{ x_{i-1}\lt x_i'\lt x_i }[/math] עבור i כלשהו. בהתאם לכך נגדיר [math]\displaystyle{ M_i^-:=\sup\{f(x):\ x_{i-1}\le x\le x_i'\} }[/math] ו-[math]\displaystyle{ M_i^+:=\sup\{f(x):\ x_i'\le x\le x_i\} }[/math]. כמו כן, לא שינינו כל תת קטע [math]\displaystyle{ [x_{k-1},x_k] }[/math] עבור [math]\displaystyle{ k\not=i }[/math] כלשהו. לכן [math]\displaystyle{ \overline S(f,P)-\overline S(f,Q)=M_i\Delta x_i-\Big(M_i^-(x_i'-x_{i-1})+M_i^+(x_i-x_i')\Big) }[/math]
לפי ההגדרות [math]\displaystyle{ M_i\ge M_i^+,M_i^- }[/math] ולפיכך
(המשך בהרצאה הבאה)